Solving Dirichlet and Poisson problems on graphs by means of equilibrium measures
نویسندگان
چکیده
We aim here at obtaining an explicit expression of the solution of the Dirichlet and Poisson problems on graphs. To this end, we consider the Laplacian of a graph as a kernel on the vertex set, V , in the framework of Potential Theory. Then, the properties of such a kernel allow us to obtain for each proper vertex subset the equilibrium measure that solves the so-called equilibrium problem. As a consequence, the Green function of the Dirichlet problems, the generalized Green function of the Poisson problems and the solution of the condenser principle are obtained solely in terms of equilibrium measures for suitable subsets. In particular, we get a formula for the effective resistance between any pair of vertices of a graph. Specifically, rxy = 1 n (νx(y) + νy(x)), where νz denotes the equilibrium measure for the set V − {z}. In any case, the equilibrium measure for a proper subset is accomplished by solving a Linear Programming Problem.
منابع مشابه
Solving Boundary Value Problems on Networks using Equilibrium Measures
The purpose of this paper is to construct the solution of self-adjoint boundary value problems on finite networks. To this end, we obtain explicit expressions of the Green functions for all different boundary value problems. The method consists in reducing each boundary value problem either to a Dirichlet problem or to a Poisson equation on a new network closely related with the former boundary...
متن کاملBounds on the First Nonzero Eigen- Value for Self-adjoint Boundary Value Problems on Networks
We aim here at obtaining bounds on the first nonzero eigenvalue for selfadjoint boundary value problems on a weighted network by means of equilibrium measures, that include the study of Dirichlet, Neumann and Mixed problems. We also show the sharpness of these bounds throughout the analysis of some examples. In particular we emphasize the case of distance-regular graphs and we show that the obt...
متن کاملBounds on the first non-null eigenvalue for self-adjoint boundary value problems on networks
We aim here at obtaining bounds on the first non-null eigenvalue for self-adjoint boundary value problems on a weighted network by means of equilibrium measures, that includes the study of Dirichlet, Neumann and Mixed problems. We also show the sharpness of these bounds throughout the analysis of some known examples. In particular, we emphasize the case of distance-regular graphs, and we show t...
متن کاملSemiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2003