Electrostatic contributions drive the interaction between Staphylococcus aureus protein Efb-C and its complement target C3d.

نویسندگان

  • Nurit Haspel
  • Daniel Ricklin
  • Brian V Geisbrecht
  • Lydia E Kavraki
  • John D Lambris
چکیده

The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2.

Staphylococcus aureus expresses a highly diversified arsenal of immune evasion proteins, many of which target the complement system. The extracellular fibrinogen-binding protein (Efb) and the Efb homologous protein (Ehp) have previously been demonstrated to bind to C3 and inhibit complement activation and amplification. In this study we present the first evidence that Efb and Ehp are also capab...

متن کامل

Solution insights into the structure of the Efb/C3 complement inhibitory complex as revealed by lysine acetylation and mass spectrometry.

The extracellular fibrinogen-binding protein (Efb), an immunosuppressive and anti-inflammatory protein secreted by Staphylococcus aureus, has been identified as a potent inhibitor of complement-mediated innate immunity. Efb functions by binding to and disrupting the function of complement component 3 (C3). In a recent study, we presented a high-resolution co-crystal structure of the complement ...

متن کامل

Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb).

The secreted Staphylococcus aureus extracellular fibrinogen-binding protein (Efb) is a virulence factor that binds to both the complement component C3b and fibrinogen. Our laboratory previously reported that by binding to C3b, Efb inhibited complement activation and blocked opsonophagocytosis. We have now located the Efb binding domain in C3b to the C3d fragment and determined a disassociation ...

متن کامل

Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: implications for the controversy regarding the CR2/C3d cocrystal structure.

We recently characterized an interaction between the Staphylococcus aureus immune evasion molecule Staphylococcus aureus binder of Ig (Sbi) and complement C3, an interaction mediated primarily through the binding of C3d(g) to Sbi domain IV. Events related to these studies prompted us to investigate via mutagenesis the binding interface of C3d for Sbi domain IV (Sbi-IV), as well as to revisit th...

متن کامل

Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses.

Staphylococcus aureus is a leading human pathogen that causes a large variety of diseases. In vitro studies have shown that S. aureus secretes several small proteins that block specific elements of the host innate immune system, but their role in bacterial pathogenicity is unknown. For instance, the extracellular complement-binding protein (Ecb) impairs complement activation by binding to the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2008