Graphic vertices of the metric polytope

نویسنده

  • Monique Laurent
چکیده

The metric polytope ,//~. is defined by the triangle inequalities: xij-Xik-Xjk <~ 0 and xii + Xik + Xjk ~< 2 for all triples i,j, k of(1 ..... n}. The integral vertices of ~¢¢~. are the incidence vectors of the cuts of the complete graph Kn. Therefore, ~¢~. is a relaxation of the cut polytope of K~. We study here the fractional vertices of ~¢¢~. Many of them are constructed from graphs; this is the case for the one-third-integral vertices. One-third-integral vertices are, in a sense, the simplest fractional vertices of ~'~, as ./t'~ has no half-integral vertices. Several constructions for one-third-integral vertices are presented. In particular, the graphic vertices arising from the suspension of a tree are characterized. We describe the symmetries of ~¢/~. and obtain that the vertices are partitioned into switching classes. With the exception of the cuts which are pairwise adjacent, it is shown that no two vertices of the same switching class are adjacent on ~¢~n. The question of adjacency of the fractional vertices to the integral ones is also addressed. All the vertices of ,//~. for n ~< 6 are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Skeleton of the Metric Polytope

We consider polyhedra with applications to well-know combinatorial optimization problems: the metric polytope mn and its relatives. For n ≤ 6 the description of the metric polytope is easy as mn has at most 544 vertices partitioned into 3 orbits; m7 the largest previously know instance has 275 840 vertices but only 13 orbits. Using its large symmetry group, we enumerate orbitwise 1 550 825 600 ...

متن کامل

On Skeletons , Diameters and Volumesof Metric PolyhedraAntoine DEZA

We survey and present new geometric and combinatorial properties of some polyhedra with application in combinatorial optimization, for example, the max-cut and multicommodity ow problems. Namely we consider the volume, symmetry group, facets, vertices, face lattice, diameter, adjacency and incidence relations and connectivity of the metric polytope and its relatives. In particular, using its la...

متن کامل

On Skeletons, Diameters and Volumes of Metric Polyhedra

Abst rac t . We survey and present new geometric and combinatorial propertiez of some polyhedra with application in combinatorial optimization, for example, the max-cut and multicommodity flow problems. Namely we consider the volume, symmetry group, facets, vertices, face lattice, diameter, adjacency and incidence relm :ons and connectivity of the metric polytope and its relatives. In partic~da...

متن کامل

On the Face Lattice of the Metric Polytope

In this paper we study enumeration problems for polytopes arising from combinatorial optimization problems. While these polytopes turn out to be quickly intractable for enumeration algorithms designed for general polytopes, tailor-made algorithms using their rich combinatorial features can exhibit strong performances. The main engine of these combinatorial algorithms is the use of the large sym...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 151  شماره 

صفحات  -

تاریخ انتشار 1996