Calorie restriction alters mitochondrial protein acetylation.
نویسندگان
چکیده
Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation of mitochondrial proteins is altered during CR in a tissue-specific fashion. Via large-scale mass spectrometry screening, we identify 72 candidate proteins involved in a variety of metabolic pathways with altered acetylation during CR. Mitochondrial acetylation changes may play an important role in the pro-longevity CR response.
منابع مشابه
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.
Calorie restriction (CR) extends life span in diverse species. Mitochondria play a key role in CR adaptation; however, the molecular details remain elusive. We developed and applied a quantitative mass spectrometry method to probe the liver mitochondrial acetyl-proteome during CR versus control diet in mice that were wild-type or lacked the protein deacetylase SIRT3. Quantification of 3,285 ace...
متن کاملReduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat
Aging is associated with various metabolic disorders that may have their origin in the liver, including non-alcoholic fatty liver disease, obesity, type 2 diabetes mellitus, and atherosclerosis. Although well-characterized in models of caloric restriction, relatively little is known about the role of sirtuins and acetylation under conditions of caloric excess. Sirtuins are NAD (+)-dependent pro...
متن کاملLack of effect of caloric restriction on bioenergetics and reactive oxygen species production in intact rat hepatocytes.
To investigate the hypothesis that caloric restriction alters mitochondrial function in situ, intact hepatocytes were isolated from fully fed and calorie-restricted (55% of control food intake, 4 months duration) male Brown-Norway rats at 6 months of age, and various parameters were determined. Overall, the production of reactive oxygen species was not affected by caloric restriction, neither w...
متن کاملSIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
Sirtuins are NAD-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal...
متن کاملSIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
The sirtuins are a family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Humans have seven sirtuins (SIRT1-SIRT7) with distinct subcellular locations and functions. SIRT3 is localized to the mitochondrial matrix and its expression is selectively activated during fasting and calorie restriction. Activated SIRT3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aging cell
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2009