The DNA element controlling expression of the varicella-zoster virus open reading frame 28 and 29 genes consists of two divergent unidirectional promoters which have a common USF site.
نویسندگان
چکیده
The mechanism of the divergent expression of the varicella-zoster virus (VZV) ORF 28 and ORF 29 genes from a common intergenic DNA element, the ORF 28/29 promoter, is of interest based on the observation that both genes are expressed during VZV lytic infection but only the ORF 29 gene is expressed in latently infected neurons. In the work presented here, expression driven by the ORF 28/29 intergenic region was examined. We found that the promoter activity towards the ORF 29 direction is more responsive to activation by the major viral transactivator IE62 than that towards the ORF 28 direction in the context of our experimental system. Analysis of the functional DNA elements involved in IE62 activation of the bidirectional ORF 28/29 regulatory element revealed that in both transfected and VZV-superinfected cells it is a fusion of two unidirectional promoters overlapping an essential USF binding site but with distinct TATA elements. A single TATA element directs expression in the ORF 28 direction, whereas the two TATA elements directing ORF 29 gene expression are alternatively and differentially utilized for transcription initiation. We also identified an Sp1 site localized proximal to the ORF 28 gene which functions as an activator element for expression in both directions. These results indicate that the ORF 28 and ORF 29 genes can be expressed either coordinately or independently and that the observed expression of only the ORF 29 gene during VZV latency may involve neuron-specific cellular factors and/or structural aspects of the latent viral genome.
منابع مشابه
Anatomy of the varicella-zoster virus open-reading frame 4 promoter.
The regulation of varicella-zoster virus (VZV) gene expression is largely controlled at the transcriptional level by a few key viral proteins cooperating with one another and with cellular transcription factors. However, the mechanisms involved are largely unclear. To identify the sequences important for the transcriptional regulation of open-reading frame (ORF) 4, itself encoding a transcripti...
متن کاملPromoter sequences of varicella-zoster virus glycoprotein I targeted by cellular transactivating factors Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo.
Varicella-zoster virus (VZV) glycoprotein I is dispensable in cell culture but necessary for infection of human skin and T cells in SCIDhu mice in vivo. The gI promoter contains an activating upstream sequence that binds the cellular transactivators specificity factor 1 (Sp1) and upstream stimulatory factor (USF) and an open reading frame 29 (ORF29)-responsive element (29RE), which mediates enh...
متن کاملVaricella Zoster Virus (VZV) Origin-Dependent Plasmid Replication in the Presence of the Four Overlapping Cosmids Comprising the Complete Genome of VZV
The Varicella-Zoster Virus (VZV) genome contains both cis-acting and trans-acting elements, which are important in viral DNA replication. The cis-acting elements consist of two copies of oriS, and the trans-acting elements are those genes whose products are required for virus DNA replication. It has been shown that each of the seven genes required for ori-dependent DNA synthesis of Herpes Simpl...
متن کاملComparative Molecular PCR-RFLP Study of Native Herpes Simplex Virus Type 1 (HSV-1) with KOS Strain
Background: Recent research on several DNA fragments covering open reading frames (ORF) 1-37 shows a new genetic marker in ORF 6 which is specific for differentiating wild-type varicella-zoster virus (VZV) strains from Oka varicella vaccine strain. On the other hand, herpes simplex virus (HSV) genome analysis by restriction enzymes is used to differentiate types one and two of the virus and eve...
متن کاملPromoter activation by the varicella-zoster virus major transactivator IE62 and the cellular transcription factor USF.
The varicella-zoster virus major transactivator, IE62, can activate expression from homologous and heterologous promoters. High levels of IE62-mediated activation appear to involve synergy with cellular transcription factors. The work presented here focuses on functional interactions of IE62 with the ubiquitously expressed cellular factor USF. We have found that USF can synergize with IE62 to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 78 20 شماره
صفحات -
تاریخ انتشار 2004