Expression patterns of Ca(V)1.3 channels in the rat cochlea.

نویسندگان

  • Jin Chen
  • Hanqi Chu
  • Hao Xiong
  • Qingguo Chen
  • Liangqiang Zhou
  • Dan Bing
  • Yun Liu
  • Yan Gao
  • Shaoli Wang
  • Xiaowen Huang
  • Yonghua Cui
چکیده

Although Ca(V)1.3 channels are known to be essential for neuronal excitation and signal transduction in the auditory system, their expression patterns in the cochlea are still not fully understood, particularly in the regions where non-sensory cells are located. We performed immunohistochemistry, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) to identify the expression and distribution of Ca(V)1.3 channels in the rat cochlea. Immunohistochemistry revealed that Ca(V)1.3 channels were localized in the outer hair cells (OHCs), inner hair cells (IHCs), limbus laminae spiralis, spiral ganglion cell, spiral ligament (SL), and stria vascularis (STV). The results of RT-PCR and western blotting demonstrated Ca(V)1.3 channels had a tissue-specific expression pattern. Ca(V)1.3 mRNA and protein were intensively expressed in the basilar membrane and spiral ganglion while moderate level of Ca(V)1.3 channels was observed in SL and STV. Our study preliminarily revealed the expression patterns of Ca(V)1.3 channels in the rat cochlea, providing a theoretical basis for further research on the role of Ca(V)1.3 channels in the periphery auditory system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells.

Native Ca(V)1.3 channels within cochlear hair cells exhibit a surprising lack of Ca2+-dependent inactivation (CDI), given that heterologously expressed Ca(V)1.3 channels show marked CDI. To determine whether alternative splicing at the C terminus of the Ca(V)1.3 gene may produce a hair cell splice variant with weak CDI, we transcript-scanned mRNA obtained from rat cochlea. We found that the alt...

متن کامل

Levels of CaV1.2 L-Type Ca2+ Channels Peak in the First Two Weeks in Rat Hippocampus Whereas CaV1.3 Channels Steadily Increase through Development

Influx of calcium through voltage-dependent channels regulates processes throughout the nervous system. Specifically, influx through L-type channels plays a variety of roles in early neuronal development and is commonly modulated by G-protein-coupled receptors such as GABA(B) receptors. Of the four isoforms of L-type channels, only Ca(V)1.2 and Ca(V)1.3 are predominately expressed in the nervou...

متن کامل

Investigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea

Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...

متن کامل

Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus.

Neuronal L-type Ca(2+) channels do not support synaptic transmission, but they play an essential role in synaptic activity-dependent gene expression. Ca(v)1.2 and Ca(v)1.3 are the two most widely expressed L-type Ca(2+) channels in neurons and have different biophysical and subcellular distributions. The function of the Ca(v) 1.3 L-type Ca(2+) channel and its cellular mechanisms in the central ...

متن کامل

Cav1.3 calcium channels are required for normal development of the auditory brainstem.

Within the Ca(v)1 family of voltage-gated calcium channels, Ca(v)1.2 and Ca(v)1.3 channels are the predominant subtypes in the brain. Whereas specific functions for each subtype were described in the adult brain, their role in brain development is poorly understood. Here we assess the role of Ca(v)1.3 subunits in the activity-dependent development of the auditory brainstem. We used Ca(v)1.3-def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2012