Genetically Tuned Dual-ANFIS Model for Steam Turbine Fault Diagnosis and Treatment

نویسندگان

  • D. N. Dewangan
  • Manoj Kumar Jha
چکیده

Fault diagnosis of steam turbine is essential to predict further development and to anticipate it by taking appropriate measures. Fault diagnosis of modern industrial power plants by human inspection is time-consuming and expensive as well as fault diagnostic system modelling based on conventional mathematical tools is not suitable for ill defined and uncertain system. Therefore, it is necessary to develop a knowledge-based intelligent fault diagnostic and treatment system. The primary aim of the work is developing a fast and reliable fault diagnostic and treatment system to assist plant operators. Averaging error of ANFIS is opted for fitness function of the genetic program. In this diagnosis process, the fault diagnosis and treatment model has simulated using MATLab Simulink and obtain rules set extracted by original neural network, ANFIS structure and genetically tuned dual-ANFIS. The comparative result of fault diagnosis of different method shows that the mode of genetically tuned ANFIS has higher precision in comparison to other knowledge obtaining methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection and Isolation Based on Neural Networks Case Study: Steam Turbine

The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and ...

متن کامل

An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis

In the field of mechanical engineering, steam turbine fault diagnosis is a difficult task for mechanical engineers who are confronted with challenges in dealing with copious amounts of uncertain information. Different mechanical engineers may have their own opinions about the system fault knowledge base that differs slightly from other mechanical engineers. Thus, to solve the problems presented...

متن کامل

Application of extension theory to vibration fault diagnosis of generator sets - Generation, Transmission and Distribution, IEE Proceedings-

An extension diagnosis method based on the matter-element model and extended correlation function is presented for vibration fault diagnosis of steam turbine generators. First, the matter-element models of the vibration fault are built according to diagnostics derived from practical experience and then, vibration faults in steam-turbine generators can be directly identified by relation indices....

متن کامل

Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic numbers

Since the neutrosophic number consists of its determinate part d and its indeterminate part eI denoted by N = d + eI, it is very suitable for dealing with real problems with indeterminacy. Therefore, this paper proposes the exponential similarity measure of neutrosophic numbers and a fault diagnosis method of steam turbine by using the exponential similarity measure of neutrosophic numbers. By ...

متن کامل

Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes

Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015