Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
نویسندگان
چکیده
Previously we reported the sequence of the member of the short wavelength sensitive 2 (SWS2) family of vertebrate visual pigments from the retina of the Japanese common newt, Cynops pyrrhogaster[Takahashi, Y. et al. (2001) FEBS Lett. 501, 151-155]. Now we have expressed the apopigment and regenerated it with A1 retinal. Its absorption maximum, 474 nm, is greatly red shifted compared to other known SWS2 pigments (418-455 nm). To determine the amino acid residues that control its spectral tuning, we replaced the residues that were near the chromophore and which differed between the newt and the bullfrog (lambda(max) = 430 nm) wild-type SWS2 pigments: Pro91Ser, Ser94Ala, Ile122Met, Cys127Ser, Ser211Cys, Tyr261Phe, and Ala292Ser. Each of these site-directed mutants led to blue shifts of the newt pigment with five of them causing substantial shifts; their sum was about equal to the difference between the absorption maximum of the bullfrog and newt pigments, 44 nm. The 32 nm shift of the absorption maximum of the multiple seven-residue mutant to 442 nm is fairly close to that of the wild-type bullfrog pigment. Thus, the seven amino acid residues that we replaced are the major cause of the red shift of the newt SWS2 pigment's spectrum. Two of the residues, 91 and 94, have not previously been identified as wavelength regulating sites in visual pigments. One of these, 91, probably regulates color via a new mechanism: altering of a hydrogen bonding network that is connected via a water to the chromophore, in this case its counterion, Glu113.
منابع مشابه
Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
Ultraviolet (UV) and violet vision in vertebrates is mediated by UV and violet visual pigments that absorb light maximally (lambdamax) at approximately 360 and 390-440 nm, respectively. So far, a total of 11 amino acid sites only in transmembrane (TM) helices I-III are known to be involved in the functional differentiation of these short wavelength-sensitive type 1 (SWS1) pigments. Here, we hav...
متن کاملThe cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
Studies on marsupial color vision have been limited to very few species. There is evidence from behavioral, electroretinographic (ERG), and microspectrophotometric (MSP) measurements for the existence of both dichromatic and trichromatic color vision. No studies have yet investigated the molecular mechanisms of spectral tuning in the visual pigments of marsupials. Our study is the first to dete...
متن کاملMolecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
Vertebrate vision is mediated by five groups of visual pigments, each absorbing a specific wavelength of light between ultraviolet and red. Despite extensive mutagenesis analyses, the mechanisms by which contemporary pigments absorb variable wavelengths of light are poorly understood. We show that the molecular basis of the spectral tuning of contemporary visual pigments can be illuminated only...
متن کاملLimited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration.
Variation in visual spectral tuning has evolved in concert with signal colour in some taxa, but there is limited evidence of this pattern in birds. To further investigate this possibility, we compared spectral sensitivity among bowerbird species that occupy different visual habitats and are highly diverged in plumage and decoration colour displays, which are important in mate choice and possibl...
متن کاملSatiation gives krill that sinking feeling
sciurids: results from golden mantled ground squirrels and comparisons for five species. Anim. Behav. 26, 409–421. 3. Hunt, D.M., Wilkie, S.E., Bowmaker, J.K., and Poopalasundaram, S. (2001). Vision in the ultraviolet. Cell. Mol. Life Sci. 58, 1583–1598. 4. Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Robinson, P.R., Bowmaker, J.K., and Hunt, D.M. (2002). The molecular mechanism for the spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 42 20 شماره
صفحات -
تاریخ انتشار 2003