Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors.
نویسندگان
چکیده
Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa(2)Cu(3)O(7) matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.
منابع مشابه
nd - m at . s up r - co n ] 4 D ec 2 00 4 Irradiation - induced suppression of the critical temperature in high - T c superconductors : Pair breaking versus phase fluctuations
Irradiation-induced suppression of the critical temperature in high-T c superconductors: Pair breaking versus phase fluctuations Experiments on the irradiation-induced suppression of the critical temperature in high-T c superconductors are analyzed within the mean-field Abrikosov-Gor'kov-like approach. It is shown that the experimental data for YBa 2 Cu 3 O 7−δ single crystals can be quantitati...
متن کاملخواص ساختاری، الکترونی و دینامیک شار ابررسانای Gd (Ba2-x) Cu3O7+δ
The Gd(Ba2-xPrx)Cu3O single phase polycrystalline samples with 0.00 ≤ x ≤ 1.00 were investigated for structural, electronic and flux dynamic properties. An unusual hump on the resistivity vs. temperature curve of the samples has been observed for particular values of Pr doping. We have found that the Ba atom substitution at the rare earth site could lead to superconductivity in some parts of ...
متن کاملEffects of the sintering temperature on the flux-pinning mechanism and the activation energy of malic-acid doped MgB2
The flux-pinning mechanism and activation energy of 10 wt % malic acid-doped MgB2 were investigated by measuring of the critical current density and resistivity as a function of magnetic field and temperature. A crossover field, Bsb, was observed from the single vortex to the small vortex bundle pinning regime. For the sintered sample, the temperature dependence of Bsb(T) at low temperature i...
متن کاملLocalized Flux Lines and the Bose Glass
Columnar defects provide effective pinning centers for magnetic flux lines in high–Tc superconductors. Utilizing a mapping of the statistical mechanics of directed lines to the quantum mechanics of two–dimensional bosons, one expects an entangled flux liquid phase at high temperatures, separated by a second–order localization transition from a low–temperature “Bose glass” phase with infinite ti...
متن کاملVortex lattice pinning in high-temperature superconductors
Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice, creation of new vortex-liquid phases etc. These effects are not seen in conventional superconductors. This is mainly due to the fact that HTc compounds are strongly type two superconductors with Ginzburg-Landau ratio up to ~110 that makes thermal and quantum fluctuations more pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2012