Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results
نویسندگان
چکیده
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems.
منابع مشابه
Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...
متن کاملExploiting Structured Sparsity in Large Scale Semidefinite Programming Problems
in linear and nonlinear inequalities via positive semidefinite matrix completion " , Mathematical Programming to appear.
متن کاملExploiting Sparsity in Semideenite Programming via Matrix Completion Ii: Implementation and Numerical Results
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semideenite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semideenite matrix completion, and it can be embodied in two diierent ways. One is by a con...
متن کاملExploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
Abstract A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the...
متن کاملExploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?
A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 95 شماره
صفحات -
تاریخ انتشار 2003