Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes
نویسندگان
چکیده
As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. -0.85/-0.52 V vs. SCE, respectively) and high specific capacity (170 mAh·g-1 at current density of 0.5 A·g-1 in KOH electrolyte), Bi was demonstrated as a suitable anode material for aqueous batteries. Furthermore, by electrochemical impedance spectroscopy (EIS) analysis, we found that with smaller Rs and faster ion diffusion coefficient, Bi electrode film in KOH electrolyte exhibited better electrochemical performance than in LiOH and NaOH electrolytes.
منابع مشابه
Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode
The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملRecent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory
Rechargeable non-aqueous Li-air battery technology offers potential advantages over other existing battery systems in terms of specific energy and energy density, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. Development of efficient cathode catalysts and stable electrolytes for the Li-air battery has been intensively investigated for...
متن کاملElectrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.
An aluminum metal, both native and with a very thin oxide film, was investigated as an anode for aluminum-ion batteries. Investigations were carried out in an acidic ionic liquid electrolyte, composed of AlCl3 in 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl), with β-MnO2/C as a cathode. The battery based on Al metal with a very thin oxide film showed high capacity and stable surface corrosion.
متن کاملHigh-capacity aqueous zinc batteries using sustainable quinone electrodes
Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capaci...
متن کامل