Counting Arithmetical Structures on Paths and Cycles

نویسندگان

  • BENJAMIN BRAUN
  • HUGO CORRALES
  • SCOTT CORRY
  • LUIS DAVID GARCÍA
چکیده

Let G be a finite, simple, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag(d)−A)r = 0, where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the cokernels of the matrices (diag(d) − A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients ( 2n−1 n−1 ) , and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logical Definability of Counting Functions

The relationship between counting functions and logical expressibility is explored. The most well studied class of counting functions is #P, which consists of the functions counting the accepting computation paths of a nondeterministic polynomial-time Turing machine. For a logic L, #L is the class of functions on nite structures counting the tuples (T ; c) satisfying a given formula (T ; c) in ...

متن کامل

Approximately Counting Hamilton Paths and Cycles in Dense Graphs

We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (g + e)n, for any fixed e > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.

متن کامل

Characterization of signed paths and cycles admitting minus dominating function

If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.

متن کامل

The Parameterized Complexity of Counting Problems

We develop a parameterized complexity theory for counting problems. As the basis of this theory, we introduce a hierarchy of parameterized counting complexity classes #W[t], for t ≥ 1, that corresponds to Downey and Fellows’s W-hierarchy [13] and show that a few central W-completeness results for decision problems translate to #W-completeness results for the corresponding counting problems. Cou...

متن کامل

Digraph Polynomials for Counting Cycles and Paths

Many polynomial invariants are defined on graphs for encoding the combinatorial information and researching them algebraically. In this paper, we introduce the cycle polynomial and the path polynomial of directed graphs for counting cycles and paths, respectively. They satisfy recurrence relations with respect to elementary edge or vertex operations. They are related to other polynomials and ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017