Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice

نویسندگان

  • Qi‐Na Huang
  • Yong‐Feng Shi
  • Xiao‐Bo Zhang
  • Li‐Xin Song
  • Bao‐Hua Feng
  • Hui‐Mei Wang
  • Xia Xu
  • Xiao‐Hong Li
  • Dan Guo
  • Jian‐Li Wu
چکیده

A premature senescence and death 128 (psd128) mutant was isolated from an ethyl methane sulfonate-induced rice IR64 mutant bank. The premature senescence phenotype appeared at the six-leaf stage and the plant died at the early heading stage. psd128 exhibited impaired chloroplast development with significantly reduced photosynthetic ability, chlorophyll and carotenoid contents, root vigor, soluble protein content and increased malonaldehyde content. Furthermore, the expression of senescence-related genes was significantly altered in psd128. The mutant trait was controlled by a single recessive nuclear gene. Using map-based strategy, the mutation Oryza sativa cell division cycle 48 (OsCDC48) was isolated and predicted to encode a putative AAA-type ATPase with 809 amino-acid residuals. A single base substitution at position C2347T in psd128 resulted in a premature stop codon. Functional complementation could rescue the mutant phenotype. In addition, RNA interference resulted in the premature senescence and death phenotype. OsCDC48 was expressed constitutively in the root, stem, leaf and panicle. Subcellular analysis indicated that OsCDC48:YFP fusion proteins were located both in the cytoplasm and nucleus. OsCDC48 was highly conserved with more than 90% identity in the protein levels among plant species. Our results indicated that the impaired function of OsCDC48 was responsible for the premature senescence and death phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Comparative Analysis of Premature Senescence Leaf Mutants in Rice (Oryza sativa L.)

Premature leaf senescence negatively impacts the grain yield in the important monocot rice (Oryza sativa L.); to understand the molecular mechanism we carried out a screen for mutants with premature senescence leaves in a mutant bank generated by ethyl methane sulfonate (EMS) mutagenesis of elite indica rice ZhongJian100. Five premature senescence leaf (psl15, psl50, psl89, psl117 and psl270) m...

متن کامل

Molecular Diagnosis of Familial Hypercholesterolemia

Abstract Background and objectives: Familial hypercholesterolemia (FH) is an autosomal disorder characterized by increased levels of total cholesterol and low density lipoprotein cholesterol. The FH clinical phenotype has been associated with increased risk of coronary heart disease and premature death. The mutation in LDLR gene in most cases is responsible for FH phenotype. Furthermore, other ...

متن کامل

Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology.

An Arabidopsis mosaic death1 (mod1) mutant, which has premature cell death in multiple organs, was isolated. mod1 plants display multiple morphological phenotypes, including chlorotic and curly leaves, distorted siliques, premature senescence of primary inflorescences, reduced fertility, and semidwarfism. The phenotype of the mod1 mutant results from a single nuclear recessive mutation, and the...

متن کامل

I-41: Genetic Causes of Premature Ovarian Failure (POF) and early Menopause

Premature ovarian failure (POF) is a heterogeneous disorder, defined as menopause under age 40 years. The prevalence is 1%; POF before age 30 years is much less common. Chromosomal causes have long been recognized - visible deletions of the X chromosome, 45,X/46,XX mosaicism, and autosomal rearrangements (balanced translocations). Toxins or iatrogenic causes (e.g., chemotherapeutic agents) are ...

متن کامل

Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity.

The rice (Oryza sativa) spotted leaf11 (spl11) mutant was identified from an ethyl methanesulfonate-mutagenized indica cultivar IR68 population and was previously shown to display a spontaneous cell death phenotype and enhanced resistance to rice fungal and bacterial pathogens. Here, we have isolated Spl11 via a map-based cloning strategy. The isolation of the Spl11 gene was facilitated by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2016