Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate
نویسندگان
چکیده
We present a study of the vertically integrated deviatoric stress field for the Indian plate and the Tibetan Plateau associated with gravitational potential energy (GPE) differences. Although the driving forces for the Indian plate have been attributed solely to the mid-oceanic ridges that surround the entire southern boundary of the plate, previous estimates of vertically integrated stress magnitudes of!6–7! 1012 N/m in Tibet far exceed those of !3 ! 1012 N/m associated with GPE at mid-oceanic ridges, calling for an additional force to satisfy the stress magnitudes in Tibet. We use the Crust 2.0 data set to infer gravitational potential energy differences in the lithosphere. We then apply the thin sheet approach in order to obtain a global solution of vertically integrated deviatoric stresses associated only with GPE differences. Our results show large N-S extensional deviatoric stresses in Tibet that the ridge-push force fails to cancel. Our results calibrate the magnitude of the basal tractions, associated with density buoyancy driven mantle flow, that are applied at the base of the lithosphere in order to drive India into Tibet and cancel the N-S extensional stresses within Tibet. Moreover, our deviatoric stress field solution indicates that both the ridge-push influence (!1 ! 1012 N/m) and the vertically integrated deviatoric stresses associated with GPE differences around the Tibetan Plateau (!3 ! 1012 N/m) have previously been overestimated by a factor of two or more. These overestimates have resulted from either simplified two-dimensional approximations of the thin sheet equations, or from an assumption about the mean stress that is unlikely to be correct.
منابع مشابه
India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions
[1] The plate motion of India changed dramatically between 50 and 35 Ma, with the rate of convergence between India and Asia dropping from 15 to 4 cm/yr. This change is coincident with the onset of the India-Asia collision, and with a rearrangement of plate boundaries in the Indian Ocean. On the basis of a simple model for the forces exerted upon the edges of the plate and the tractions on the ...
متن کاملSouthward extrusion of Tibetan crust and its effect on Himalayan tectonics
The Tibetan Plateau is a storehouse of excess gravitational potential energy accumulated through crustal thickening during India-Asia collision, and the contrast in potential energy between the Plateau and its surroundings strongly influences the modern tectonics of south As•a. The distribution of potential energy anomalies across the region, derived from geopotential models, indicates that the...
متن کاملTransition from continental collision to tectonic escape? A geophysical perspective on lateral expansion of the northern Tibetan Plateau
A number of tectonic models have been proposed for the Tibetan Plateau, which origin, however, remains poorly understood. In this study, investigations of the shear wave velocity (Vs) and density (ρ) structures of the crust and upper mantle evidenced three remarkable features: (1) There are variations in Vs and ρ of the metasomatic mantle wedge in the hanging wall of the subduction beneath diff...
متن کاملDepth variations of P-wave azimuthal anisotropy beneath Mainland China
A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynam...
متن کاملLand use change and its driving forces on the Tibetan Plateau during 1990 – 2000
Rapid economic development has spurred land use change in China since the Chinese government initiated its economic reform in 1978. Although many papers have analyzed the characteristics of land use change, especially cropland conversion to non-agricultural use affected by economic development in the developed regions of China, relatively less attention has been paid to studying the characteris...
متن کامل