Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires
نویسندگان
چکیده
منابع مشابه
Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction
Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation...
متن کاملMethod for suppression of stacking faults in Wurtzite III-V nanowires.
The growth of wurtzite GaAs and InAs nanowires with diameters of a few tens of nanometers with negligible intermixing of zinc blende stacking is reported. The suppression of the number of stacking faults was obtained by a procedure within the vapor-liquid-solid growth, which exploits the theoretical result that nanowires of small diameter ( approximately 10 nm) adopt purely wurtzite structure a...
متن کاملTemperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic ...
متن کاملEnhanced thermoelectric figure of merit in thin GaAs nanowires.
Combining density functional theory and the nonequilibrium Green's function method, we investigate the thermoelectric properties of thin GaAs nanowires (NWs). After identifying the most stable structures for GaAs NWs, either in wurtzite (wz) or zinc blende (zb) stacking, we present a systematic analysis on the thermoelectric properties of these NWs and their dependence on stacking type (wz or z...
متن کاملVibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure
The structural, vibrational, and electronic properties of GaAs nanowires have been studied in the metastable wurtzite phase via Resonant Raman spectroscopy and synchrotron X-ray diffraction measurements in diamond anvil cells under hydrostatic conditions between 0 and 23 GPa. The direct band gap E0 and the crystal field split-off gap E0 + Δ of wurtzite GaAs increase with pressure and their valu...
متن کامل