Self-Similarity Based Time Warping

نویسنده

  • Christopher J. Tralie
چکیده

In this work, we explore the problem of aligning two time-ordered point clouds which are spatially transformed and re-parameterized versions of each other. This has a diverse array of applications such as cross modal time series synchronization (e.g. MOCAP to video) and alignment of discretized curves in images. Most other works that address this problem attempt to jointly uncover a spatial alignment and correspondences between the two point clouds, or to derive local invariants to spatial transformations such as curvature before computing correspondences. By contrast, we sidestep spatial alignment completely by using self-similarity matrices (SSMs) as a proxy to the time-ordered point clouds, since self-similarity matrices are blind to isometries and respect global geometry. Our algorithm, dubbed “Isometry Blind Dynamic Time Warping” (IBDTW), is simple and general, and we show that its associated dissimilarity measure lower bounds the L1 Gromov-Hausdorff distance between the two point sets when restricted to warping paths. We also present a local, partial alignment extension of IBDTW based on the Smith Waterman algorithm. This eliminates the need for tedious manual cropping of time series, which is ordinarily necessary for global alignment algorithms to function properly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Music Retrieval by Rhythmic Similarity Applied on Greek and African Traditional Music

This paper presents a method for retrieving music recordings by means of rhythmic similarity in the context of traditional Greek and African music. To this end, Self Similarity Analysis is applied either on the whole recording or on instances of a music thumbnail that can be extracted from the recording with an optional thumbnailing scheme. This type of analysis permits the extraction of a rhyt...

متن کامل

Zero-Resource Audio-Only Spoken Term Detection Based on a Combination of Template Matching Techniques

Spoken term detection is a well-known information retrieval task that seeks to extract contentful information from audio by locating occurrences of known query words of interest. This paper describes a zero-resource approach to such task based on pattern matching of spoken term queries at the acoustic level. The template matching module comprises the cascade of a segmental variant of dynamic ti...

متن کامل

Self-similarity Based Editing of 3D Surface Textures

This paper presents inexpensive methods for selfsimilarity based editing of real-world 3D surface textures. Unlike self-similarity based 2D texture editing approaches which only make changes to pixel color or intensity values, these techniques also allow surface geometry, reflectance and other representations of the captured 3D surface textures to be edited and relit using illumination directio...

متن کامل

SBASS: Segment based approach for subsequence searches in sequence databases

The sequence database is a set of data sequences, each of which is an ordered list of elements [1]. Sequences of stock prices, money exchange rates, temperature data, product sales data, and company growth rates are the typical examples of sequence databases [2, 8]. Similarity search is an operation that finds sequences or subsequences whose changing patterns are similar to that of a given quer...

متن کامل

Warping Similarity Space in Category Learning by BackProp Net

We report simulations with backpropagation networks trained to discriminate and then categorize a set of stimuli. The findings suggest a possible mechanism for categorical perception based on altering interstimulus similarity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07513  شماره 

صفحات  -

تاریخ انتشار 2017