Detection of Tropical Overshooting Cloud Tops Using Himawari-8 Imagery

نویسندگان

  • Miae Kim
  • Jungho Im
  • Haemi Park
  • Seonyoung Park
  • Myong-In Lee
  • Myoung Hwan Ahn
چکیده

Overshooting convective cloud Top (OT)-accompanied clouds can cause severe weather conditions, such as lightning, strong winds, and heavy rainfall. The distribution and behavior of OTs can affect regional and global climate systems. In this paper, we propose a new approach for OT detection by using machine learning methods with multiple infrared images and their derived features. Himawari-8 satellite images were used as the main input data, and binary detection (OT or nonOT) with class probability was the output of the machine learning models. Three machine learning techniques—random forest (RF), extremely randomized trees (ERT), and logistic regression (LR)—were used to develop OT classification models to distinguish OT from non-OT. The hindcast validation over the Southeast Asia and West Pacific regions showed that RF performed best, resulting in a mean probabilities of detection (POD) of 77.06% and a mean false alarm ratio (FAR) of 36.13%. Brightness temperature at 11.2 μm (Tb11) and its standard deviation (STD) in a 3 × 3 window size were identified as the most contributing variables for discriminating OT and nonOT classes. The proposed machine learning-based OT detection algorithms produced promising results comparable to or even better than the existing approaches, which are the infrared window (IRW)-texture and water vapor (WV) minus IRW brightness temperature difference (BTD) methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overshooting convection in tropical cyclones

[1] Using infrared satellite imagery, best-track data, and reanalysis data, tropical cyclones are shown to contain a disproportionate amount of the deepest convection in the tropics. Although tropical cyclones account for only 7% of the deep convection in the tropics, they account for about 15% of the deep convection with cloud-top temperatures below the monthly averaged tropopause temperature ...

متن کامل

Radar and lightning analyses of gigantic jet-producing storms

[1] An analysis of thunderstorm environment, structure, and evolution associated with six gigantic jets (five negative polarity, one positive) was conducted. Three of these gigantic jets were observed within detection range of very high frequency lightning mapping networks. All six were within range of operational radars and two-dimensional lightning network coverage: five within the National L...

متن کامل

Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements

[1] Methods to detect tropical deep convective clouds and convective overshooting from measurements at the three water vapor channels (183.3 ± 1, 183.3 ± 3, and 183.3 ± 7 GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) are presented. Thresholds for the brightness temperature differences between the three channels are suggested as criterion to detect deep convective clouds, and an order ...

متن کامل

The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL)

Temperature and water vapor variations due to clouds in the tropical tropopause layer (TTL) are investigated using co-located MLS, CALIPSO, and CloudSat data. Convective cooling occurs only up to the cloud tops, with warming above these heights in the TTL. Water vapor and ozone anomalies above the cloud tops are consistent with the warming being due to downward motion. Thicker clouds are associ...

متن کامل

Underestimation of deep convective cloud tops by thermal imagery

The most common method of ascertaining cloud heights from space is from thermal brightness temperatures. Deep convective clouds of high water content are expected to radiate as black bodies. Here, thermal cloud top estimates from GOES-8 are compared with direct estimates of where the top should be sensed, based on colocated Goddard Cloud Physics Lidar (CPL) observations collected during the Cir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017