Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts.
نویسندگان
چکیده
At the border zone of myocardial infarcts, surviving cardiomyocytes achieve drastic remodeling of cell-cell and cell-extracellular matrix interactions. Spatiotemporal changes in these interactions are likely related to each other and possibly have significant impact on cardiac function. To elucidate the changes, we conducted experimental infarction in rats and performed 3-dimensional analysis of the localization of gap junctions (connexin43), desmosomes (desmoplakin), adherens junctions (cadherin), and integrins (beta(1)-integrin) by immunoconfocal microscopy. After myocardial infarction, changes in the distribution of gap junctions, desmosomes, and adherens junctions showed a similar but nonidentical tendency. In the early phase, gap junctions almost disappeared at stumps (longitudinal edges of cardiomyocytes facing the infarct), and, although desmosomes and adherens junctions decreased, they still remained. In the healing phase, at stumps, connexin43, desmoplakin, and cadherin were closely associated between multiple cell processes originating from a single cardiomyocyte. Electron microscopy confirmed the presence of junctional complexes between the cell processes. beta(1)-Integrin at the cell process increased during the formation of papillary myotendinous junction-like structures. Abnormal localization of connexin43 was often accompanied by desmoplakin and cadherin on lateral surfaces of surviving cardiomyocytes. These findings suggested that remodeling of gap junction distribution was closely linked to changes in desmosomes and adherens junctions and that temporary formation of intracellular junctional complexes was an element of the remodeling of cell-cell and cell-extracellular matrix interactions after myocardial infarction. Moreover, the remodeling of the intercalated disk region at the myocardial interface with area of scar tissues was associated with the acquisition of extracellular matrix and beta(1)-integrin.
منابع مشابه
Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts.
BACKGROUND Matricellular proteins are extracellular matrix proteins that do not contribute directly to tissue integrity but are capable of modulating cell function. We hypothesized that the matricellular protein thrombospondin (TSP)-1, a potent inhibitor of angiogenesis and activator of transforming growth factor (TGF-beta), is induced in healing myocardial infarcts and plays a role in suppress...
متن کاملIn vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کاملEffects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells
Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...
متن کاملTGF-ß1 Latency Associated Peptide Promotes Remodeling of Healing Cutaneous Wounds in the Rat
Background: The process of wound healing involves integrated events including inflammation, granulation tissue formation, matrix deposition and remodeling. Growth factors play a key role in the process. Among them transforming growth factor-ß1 (TGF-ß1) is known to accelerate tissue repair by promoting the synthesis and deposition of extracellular matrix proteins. However, persistence or overact...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 85 11 شماره
صفحات -
تاریخ انتشار 1999