Selective Recruitment of TAFs by Yeast Upstream Activating Sequences Implications for Eukaryotic Promoter Structure

نویسندگان

  • Xiao-Yong Li
  • Sukesh R Bhaumik
  • Xiaocun Zhu
  • Lei Li
  • Wu-Cheng Shen
  • Bharat L Dixit
  • Michael R Green
چکیده

The general transcription factor TFIID is composed of the TATA box binding protein (TBP) and multiple TBP-associated factors (TAFs). In yeast, promoters can be grouped into two classes based on the involvement of TAFs. TAF-dependent (TAF(dep)) promoters require TAFs for transcription, and TBP and TAFs are present at comparable levels on these promoters. TAF-independent (TAF(ind)) promoters do not require TAFs for activity, and TAFs are either absent or present at levels far below those of TBP on these promoters. Here, we demonstrate that the upstream activating sequence (UAS) mediates the selective recruitment of TAFs to TAF(dep) promoters. A TAF(ind) UAS fails to recruit TAFs and to direct efficient transcription when inserted upstream of a TAF(dep) core promoter. This transcriptional defect can be overcome by a potent activator, indicating that a strong activation domain can compensate for the absence of TAFs on a TAF(dep) core promoter. Our results reveal a requirement for compatibility between the UAS and core promoter and thus help explain previous reports that only certain yeast UAS-core promoter combinations and mammalian enhancer-promoter combinations are efficiently transcribed. The differential recruitment of TAFs by UASs provides strong evidence for the proposal that in vivo TAFs are the targets of some, but not all, activators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences.

Functional transcription initiation complexes can be assembled in vitro without the aid of regulatory factors that bind to upstream activating sequences. However, promoters that lack upstream activating sequences are transcribed poorly if at all in vivo, suggesting that regulatory factors are necessary for the assembly of transcription initiation complexes in cells. To test this possibility, we...

متن کامل

Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination

Understanding the regulatory logic of a eukaryotic promoter requires the elucidation of the regulatory elements within that promoter. Current experimental or computational methods to discover regulatory motifs within a promoter can be labor intensive and may miss redundant, unprecedented or weakly activating elements. We have developed an unbiased combinatorial approach to rapidly identify new ...

متن کامل

Selective roles for TATA-binding-protein-associated factors in vivo.

Transcription factor TFIID, a central component of the eukaryotic RNA polymerase II transcription machinery, is a multiprotein complex containing the TATA-binding protein (TBP) and TBP-associated factors (TAFs). In vitro, TAFs are required for the response to activator proteins, but they are dispensible for basal transcription. However, recent work in yeast cells indicates that TAFs are not gen...

متن کامل

Gcn4p and Novel Upstream Activating Sequences Regulate Targets of the Unfolded Protein Response

Eukaryotic cells respond to accumulation of unfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), a signal transduction pathway that communicates between the ER and the nucleus. In yeast, a large set of UPR target genes has been experimentally determined, but the previously characterized unfolded protein response element (UPRE), an upstream activ...

متن کامل

Can terminators be used as insulators into yeast synthetic gene circuits?

BACKGROUND In bacteria, transcription units can be insulated by placing a terminator in front of a promoter. In this way promoter leakage due to the read-through from an upstream gene or RNA polymerase unspecific binding to the DNA is, in principle, removed. Differently from bacterial terminators, yeast S. cerevisiae terminators contain a hexamer sequence, the efficiency element, that strongly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002