The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding

نویسندگان

  • Fatemeh Sadeghifar
  • Stefanie Böhm
  • Anna Vintermist
  • Ann-Kristin Östlund Farrants
چکیده

The chromatin-remodelling complex B-WICH, comprised of William syndrome transcription factor, the ATPase SNF2h and nuclear myosin, specifically activates RNA polymerase III transcription of the 5S rRNA and 7SL genes. However, the underlying mechanism is unknown. Using high-resolution MN walking we demonstrate here that B-WICH changes the chromatin structure in the vicinity of the 5S rRNA and 7SL RNA genes during RNA polymerase III transcription. The action of B-WICH is required for the binding of the RNA polymerase machinery and the regulatory factors c-Myc at the 5S rRNA and 7SL RNA genes. In addition to the c-Myc binding site at the 5S genes, we have revealed a novel c-Myc and Max binding site in the intergenic spacer of the 5S rDNA. This region also contains a region remodelled by B-WICH. We demonstrate that c-Myc binds to both sites in a Max-dependent way, and thereby activate transcription by acetylating histone H3. The novel binding patterns of c-Myc and Max link transcription of 5S rRNA to the Myc/Max/Mxd network. Since B-WICH acts prior to c-Myc and other factors, we propose a model in which the B-WICH complex is required to maintain an open chromatin structure at these RNA polymerase III genes. This is a prerequisite for the binding of additional regulatory factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription.

Nuclear actin and myosin 1 (NM1) are key regulators of gene transcription. Here, we show by biochemical fractionation of nuclear extracts, protein-protein interaction studies and chromatin immunoprecipitation assays that NM1 is part of a multiprotein complex that contains WICH, a chromatin remodelling complex containing WSTF (Williams syndrome transcription factor) and SNF2h. NM1, WSTF and SNF2...

متن کامل

The Chromatin Remodelling Complex B-WICH Changes the Chromatin Structure and Recruits Histone Acetyl-Transferases to Active rRNA Genes

The chromatin remodelling complex B-WICH, which comprises the William syndrome transcription factor (WSTF), SNF2h, and nuclear myosin 1 (NM1), is involved in regulating rDNA transcription, and SiRNA silencing of WSTF leads to a reduced level of 45S pre-rRNA. The mechanism behind the action of B-WICH is unclear. Here, we show that the B-WICH complex affects the chromatin structure and that silen...

متن کامل

Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1.

We have found earlier that Tor1 binds to 5S rDNA chromatin but the functional significance has not been established. Here, we show that association with 5S rDNA chromatin is necessary for TOR complex 1 (TORC1) to regulate the synthesis of 5S ribosomal RNA and transfer RNAs (tRNAs) by RNA polymerase (Pol) III, as well as the phosphorylation and binding to Pol III-transcribed genes of the Pol III...

متن کامل

Nuclear Myosin 1c Facilitates the Chromatin Modifications Required to Activate rRNA Gene Transcription and Cell Cycle Progression

Actin and nuclear myosin 1c (NM1) cooperate in RNA polymerase I (pol I) transcription. NM1 is also part of a multiprotein assembly, B-WICH, which is involved in transcription. This assembly contains the chromatin remodeling complex WICH with its subunits WSTF and SNF2h. We report here that NM1 binds SNF2h with enhanced affinity upon impairment of the actin-binding function. ChIP analysis reveal...

متن کامل

Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015