Social Incentive Mechanism Based Multi-User Sensing Time Optimization in Co-Operative Spectrum Sensing with Mobile Crowd Sensing
نویسندگان
چکیده
Co-operative spectrum sensing emerging as a significant method to improve the utilization of the spectrum needs sufficient sensing users to participate. Existing related papers consider only the limited secondary users in current sensing system and assume that they will always perform the co-operative spectrum sensing out of obligation. However, this assumption is impractical in the realistic situation where the secondary users are rational and they will not join in the co-operative sensing process without a certain reward to compensate their sensing energy consumption, especially the ones who have no data transmitting in current time slot. To solve this problem, we take advantage of the mobile crowd sensing to supply adequate co-operative sensing candidates, in which the sensing users are not only the secondary users but also a crowd of widely distributed mobile users equipped with personal spectrum sensors (such as smartphones, vehicle sensors). Furthermore, a social incentive mechanism is also adapted to motivate the participations of mobile sensing users. In this paper, we model the interactions among the motivated sensing users as a co-operative game where they adjust their own sensing time strategies to maximize the co-operative sensing utility, which eventually guarantees the detection performance and prevents the global sensing cost being too high. We prove that the game based optimization problem is NP-hard and exists a unique optimal equilibrium. An improved differential evolution algorithm is proposed to solve the optimization problem. Simulation results prove the better performance in our proposed multi-user sensing time optimization model and the proposed improved differential evolution algorithm, respectively compared with the non-optimization model and the other two typical equilibrium solution algorithms.
منابع مشابه
Behavior-Based online Incentive Mechanism for Crowd Sensing with Budget Constraints
Crowd sensing is a new paradigm which leverages the ubiquity of sensor-equipped mobile devices to collect data. To achieve good quality for crowd sensing, incentive mechanisms are indispensable to attract more participants. Most of existing mechanisms focus on the expected utility prior to sensing, ignoring the risk of low quality solution and privacy leakage. Traditional incentive mechanisms s...
متن کاملLong-Term Profit-Maximizing Incentive for Crowd Sensing in Mobile Social Networks
Crowd sensing is a new paradigm that leverages pervasive sensor-equipped mobile devices to provide sensing services like forensic analysis, documenting public spaces, and collaboratively constructing statistical models. Extensive user participation is indispensable for achieving good service quality. Nowadays, most of existing mechanisms focus on guaranteeing good service quality based on insta...
متن کاملOptimizing Wirelessly Powered Crowd Sensing: Trading energy for data
To overcome the limited coverage in traditional wireless sensor networks, mobile crowd sensing (MCS) has emerged as a new sensing paradigm. To achieve longer battery lives of user devices and incentive human involvement, this paper presents a novel approach that seamlessly integrates MCS with wireless power transfer, called wirelessly powered crowd sensing (WPCS), for supporting crowd sensing w...
متن کاملInvestigation of Always Present and Spectrum Sensing based Incumbent Emulators
Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...
متن کاملA Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge...
متن کامل