Substrate Type Determines Metagenomic Profiles from Diverse Chemical Habitats

نویسندگان

  • Thomas C. Jeffries
  • Justin R. Seymour
  • Jack A. Gilbert
  • Elizabeth A. Dinsdale
  • Kelly Newton
  • Sophie S. C. Leterme
  • Ben Roudnew
  • Renee J. Smith
  • Laurent Seuront
  • James G. Mitchell
چکیده

Environmental parameters drive phenotypic and genotypic frequency variations in microbial communities and thus control the extent and structure of microbial diversity. We tested the extent to which microbial community composition changes are controlled by shifting physiochemical properties within a hypersaline lagoon. We sequenced four sediment metagenomes from the Coorong, South Australia from samples which varied in salinity by 99 Practical Salinity Units (PSU), an order of magnitude in ammonia concentration and two orders of magnitude in microbial abundance. Despite the marked divergence in environmental parameters observed between samples, hierarchical clustering of taxonomic and metabolic profiles of these metagenomes showed striking similarity between the samples (>89%). Comparison of these profiles to those derived from a wide variety of publically available datasets demonstrated that the Coorong sediment metagenomes were similar to other sediment, soil, biofilm and microbial mat samples regardless of salinity (>85% similarity). Overall, clustering of solid substrate and water metagenomes into discrete similarity groups based on functional potential indicated that the dichotomy between water and solid matrices is a fundamental determinant of community microbial metabolism that is not masked by salinity, nutrient concentration or microbial abundance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metagenomic approaches to natural products from free-living and symbiotic organisms.

Bacterial cultivation has been a mainstay of natural products discovery for the past 80 years. However, the majority of bacteria are recalcitrant to culture, providing an untapped source for new natural products. Metagenomic analysis provides an alternative method to directly access the uncultivated genome for natural products research and for the discovery of novel, bioactive substances. Appli...

متن کامل

Not All Particles Are Equal: The Selective Enrichment of Particle-Associated Bacteria from the Mediterranean Sea

We have used two metagenomic approaches, direct sequencing of natural samples and sequencing after enrichment, to characterize communities of prokaryotes associated to particles. In the first approximation, different size filters (0.22 and 5 μm) were used to identify prokaryotic microbes of free-living and particle-attached bacterial communities in the Mediterranean water column. A subtractive ...

متن کامل

Discovering functional novelty in metagenomes: examples from light-mediated processes.

The emerging coverage of diverse habitats by metagenomic shotgun data opens new avenues of discovering functional novelty using computational tools. Here, we apply three different concepts for predicting novel functions within light-mediated microbial pathways in five diverse environments. Using phylogenetic approaches, we discovered two novel deep-branching subfamilies of photolyases (involved...

متن کامل

An improved method suitable for isolation of high-quality metagenomic DNA from diverse soils

Standardization of metagenomic DNA extraction protocol is a pre-requisite for a successful metagenomic study aiming to screen and exploit the variety of microorganisms inhabiting a particular soil environment. Six methods reported earlier were used for isolation of metagenomic DNA in the present study. These methods suffered with regard to either poor yield or quality of DNA. Therefore, we deve...

متن کامل

Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils

Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011