Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data
نویسندگان
چکیده
This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope)-the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their computational efficiency and accuracy of Euler angles estimation. If attitude of the object is computed only from data obtained by the gyroscope, the quaternion-based algorithm seems to be most suitable (having similar accuracy as the matrix-based algorithm, but taking approx. 30% less clock cycles on the 8-bit microcomputer). Integration of the Euler angles' time derivations has a singularity, therefore is not accurate at full range of object's attitude. Since the error in every real gyroscope system tends to increase with time due to its offset and thermal drift, we also propose some measures based on compensation by additional sensors (a magnetic compass and accelerometer). Vector data of mentioned secondary sensors has to be transformed into the inertial frame of reference. While transformation of the vector by the matrix is slightly faster than doing the same by quaternion, the compensated sensor system utilizing a matrix-based algorithm can be approximately 10% faster than the system utilizing quaternions (depending on implementation and hardware).
منابع مشابه
Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...
متن کاملSimulation of Store Separation using Low-cost CFD with Dynamic Meshing
The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...
متن کاملApplication of Speed Estimation Techniques for Induction Motor Drives in Electric Traction Industries and vehicles
Induction motors are the most commonly used in the traction industries and electric vehicles, due to their low primary cost, low maintenance costs, and good performance. Speed identification is needed for the induction motor drives. However, using of speed sensors in the induction motor drives is associated with problems such as, extra cost, reduced reliability, added mounting space, etc.. Ther...
متن کاملClassification and Comparison of Methods for Discovering Coverage Loss Areas in Wireless Sensor Networks
In recent years, wireless sensor networks data is taken into consideration as an ideal source, in terms of speed, accuracy and cost, in order to study the Earth's surface. One of the most important challenges in this area, is the signaling network coverage and finding holes. In recent years, wireless sensor networks data is taken into consideration as an ideal source, in terms of speed, accurac...
متن کاملOn Generalized Dual Euler Angles
This paper first explores the generalization of Euler angles to the case in which the rotation axes are not necessarily members of an orthonormal triad, and presents a concise solution to their computation that relies on the calculation of standard Euler angles. Then, this generalization is taken one step further by introducing translations, that is, by defining generalized Euler angles about s...
متن کامل