Estimation of Multivariate Probit Models: a Mixed Generalized Estimating/pseudo-score Equations Approach and Some Nite Sample Results

نویسنده

  • Martin Spiess
چکیده

In the present paper a mixed approach is proposed for the simultaneously estimation of regression and correlation structure parameters in multivariate probit models using generalized estimating equations for the former and pseudo-score equations for the latter. The nite sample properties of the corresponding estimators are compared to estimators proposed by Qu, Williams, Beck and Medendorp (1992) and Qu, Piedmonte and Williams (1994) using generalized estimating equations for both sets of parameters via a Monte Carlo experiment. As a `reference' estimator for an equicorrelation model, the maximum likelihood (ML) estimator of the random eeects probit model is calculated. The results show the mixed approach to be the most robust approach in the sense that the number of datasets for which the corresponding estimates converged was largest relative to the other two approaches. Furthermore, the mixed approach led to the most eecient non-ML estimators and to very eecient estima-tors for regression and correlation structure parameters relative to the ML estimator if individual covariance matrices were used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of multivariate probit models: A mixed generalized estimating/pseudo-score equations approach and some finite sample results

In the present paper a mixed approach is proposed for the simulta neously estimation of regression and correlation structure parameters in multivariate probit models using generalized estimating equations for the former and pseudo score equations for the latter The nite sample proper ties of the corresponding estimators are compared to estimators proposed by Qu Williams Beck and Medendorp and Q...

متن کامل

A mixed approach and a distribution-free multiple imputation technique for the estimation of a multivariate probit model with missing values.

In the present paper a mixed generalized estimating/pseudo-score equations (GEPSE) approach together with a distribution-free multiple imputation technique is proposed for the estimation of regression and correlation structure parameters of multivariate probit models with missing values for an ordered categorical time-invariant variable. Furthermore, a generalization of the squared trace correl...

متن کامل

Probit models: Regression parameter estimation using the ML principle despite misspecification of the correlation structure

In this paper it is shown that using the maximum likelihood ML prin ciple for the estimation of multivariate probit models leads to consistent and normally distributed pseudo maximum likelihood regression parame ter estimators PML estimators even if the true correlation structure of the responses is misspeci ed As a consequence e g the PML estimator of the random e ects probit model may be used...

متن کامل

On the Returns to Occupational Qualification in Terms of Subjective and Objective Variables: A GEE-type Approach to the Estimation of Two-Equation Panel Models

This article proposes an estimation approach for panel models with mixed continuous and ordered categorical outcomes based on generalized estimating equations for the mean and pseudo-score equations for the covariance parameters. A numerical study suggests that efficiency can be gained as concerns the mean parameter estimators by using individual covariance matrices in the estimating equations ...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007