The effect of post annealing on structure, microstructure and magnetic properties of thin Ni-Mn-Ga films

نویسندگان

  • Anja Backen
  • Robert Niemann
  • Stefan Kaufmann
  • Jörg Buschbeck
  • Ludwig Schultz
  • Sebastian Fähler
چکیده

The magnetic shape memory (MSM) alloy Ni-Mn-Ga is an active material where large strains are obtained by magnetically induced reorientation (MIR) of martensitic variants. For the integration in microsystems, epitaxial thin films are in the centre of interest since the highest strains have only been obtained in single crystals. In order to minimize the technological effort, sputter deposition at low deposition temperatures is favoured. However, for obtaining high degree of order and thus a high Curie temperature, an additional post heat treatment at elevated temperatures is necessary. We report on the consequences of the post annealing process on thin epitaxial Ni-Mn-Ga films. In addition to increasing the Curie temperature, the annealed film shows a secondary Ni-rich Ni3(Mn,Ga) phase. This phase has a well defined interface to the high temperature austenitic phase of Ni-Mn-Ga. Ni3Ga is formed due to evaporation losses of Mn and Ga. The formation of those precipitates can be avoided by preparing thin Ni-Mn-Ga films directly at elevated temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films

   In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...

متن کامل

Effect of Annealing on Physical Properties of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Applications

Cu2ZnSnS4 (CZTS) thin films were prepared by directly sputteringCu (In,Ga)Se2 quaternary target consisting of (Cu: 25%, Zn: 12.5%, Sn; 12.5%and S: 50%). The composition and structure of CZTS layers have beeninvestigated after annealing at 200 0C, 350 0C and 500 0C under vacuum. Theresults show that recrystallization of the CZTS thin film occurs and increasingthe grain size with a preferred orie...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

PULSED LASER DEPOSITION OF Ni-Zn FERRITE THIN FILMS

Thin Ni0.5 Zn0.5 Fe2 O4 ferrite films were grown on different condition on different substrates using pulsed laser deposition technique. Studying the influence of the energy of the laser beam, of the O2 pressure, of the substrate temperature, and of the distance between the target and the substrate on the microstructure and on the magnetic properties were established optimal conditions for PLD ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009