Deep Cerebellar Nuclei Play an Important Role in Two-Tone Discrimination on Delay Eyeblink Conditioning in C57BL/6 Mice
نویسندگان
چکیده
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS- (or LCS-) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS- (or LCS-) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS- (or HCS+ and LCS-). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS- (or LCS-) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.
منابع مشابه
Cerebellar cortical degeneration disrupts discrimination learning but not delay or trace classical eyeblink conditioning.
The authors investigated classical eyeblink conditioning in a relatively rare patient, B.R., with extensive cerebellar cortical atrophy and marked sparing of the dentate nucleus. Patient B.R.'s ability to acquire and extinguish simple associations (delay and trace conditioning tasks) as well as her ability to acquire more complex associations (temporal and simple discrimination tasks) were exam...
متن کاملPurkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning.
The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval di...
متن کاملImpaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice.
Converging lines of evidence from rabbits, rats, and humans argue for the crucial involvement of the cerebellum in classical conditioning of the eyeblink/nictitating membrane response in mammals. For example, selective lesions (permanent or reversible) of the cerebellum block both acquisition and retention of eyeblink conditioning. Correspondingly, electrophysiological and brain-imaging studies...
متن کاملCerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.
There is increasing evidence that, in addition to its major functional role in the regulation of fine motor control, the cerebellum is involved in other important functions, such as sensory-motor learning and memory. Classical conditioning of the eyeblink or nictitating membrane response (and other discrete behavioral responses) is a form of sensory-motor learning that depends crucially upon th...
متن کاملCerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice.
Eyeblink conditioning in restrained rabbits has served as an excellent model of cerebellar-dependent motor learning for many decades. In mice, the role of the cerebellum in eyeblink conditioning is less clear and remains controversial, partly because learning appears to engage fear-related circuits and lesions of the cerebellum do not abolish the learned behavior completely. Furthermore, experi...
متن کامل