Vertical chaos and horizontal diffusion in the bouncing-ball billiard.
نویسندگان
چکیده
The bouncing-ball billiard is a low-dimensional system with which transport properties of real physical systems can be studied theoretically. We study the bouncing-ball billiard with nonconvex scatterers and small slopes. We show that between the horizontal and vertical motion there is a separation of time scales, which is controlled by the slope of the billiard. We apply the theory of time-scale separation developed by Kantz Physica D 187, 200 (2004). If the vertical motion is chaotic, the horizontal motion is diffusive, but if the vertical motion is (quasi)periodic, there is no diffusion. We confirm the results with numerical simulations. Hence, the order-chaos transition in the vertical degrees of freedom translates into a localization-delocalization transition for the horizontal motion.
منابع مشابه
Irregular diffusion in the bouncing ball billiard
We call a system bouncing ball billiard if it consists of a particle that is subject to a constant vertical force and bounces inelastically on a one-dimensional vibrating periodically corrugated floor. Here we choose circular scatterers that are very shallow, hence this billiard is a deterministic diffusive version of the well-known bouncing ball problem on a flat vibrating plate. Computer simu...
متن کاملHow Chaotic is the Stadium Billiard? A Semiclassical Analysis
The impression gained from the literature published to date is that the spectrum of the stadium billiard can be adequately described, semiclassically, by the Gutzwiller periodic orbit trace formula together with a modified treatment of the marginally stable family of bouncing ball orbits. I show that this belief is erroneous. The Gutzwiller trace formula is not applicable for the phase space dy...
متن کاملNumerical study of a three-dimensional generalized stadium billiard
We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the recent approach pioneered by Bunimovich and Rehacek [Commun. Math. Phys. ...
متن کاملBouncing Ball Modes and Quantum Chaos
Quantum ergodicity of classically chaotic systems has been studied extensively both theoretically and experimentally, in mathematics, and in physics. Despite this long tradition we are able to present a new rigorous result using only elementary calculus. In the case of the famous Bunimovich billiard table shown in Fig.1 we prove that the wave functions have to spread into any neighbourhood of t...
متن کاملBouncing droplets on a billiard table.
In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2007