Instrumental Variable Treatment of Nonclassical Measurement Error Models
نویسندگان
چکیده
The copyright to this Article is held by the Econometric Society. It may be downloaded, printed and reproduced only for educational or research purposes, including use in course packs. No downloading or copying may be done for any commercial purpose without the explicit permission of the Econometric Society. For such commercial purposes contact the Office of the Econometric Society (contact information may be found at the website http://www.econometricsociety.org or in the back cover of Econometrica). This statement must the included on all copies of this Article that are made available electronically or in any other format. 1 While the literature on nonclassical measurement error traditionally relies on the availability of an auxiliary data set containing correctly measured observations, we establish that the availability of instruments enables the identification of a large class of nonclassical nonlinear errors-in-variables models with continuously distributed variables. Our main identifying assumption is that, conditional on the value of the true regressors, some " measure of location " of the distribution of the measurement error (e.g., its mean, mode, or median) is equal to zero. The proposed approach relies on the eigenvalue–eigenfunction decomposition of an integral operator associated with specific joint probability densities. The main identifying assumption is used to " index " the eigenfunctions so that the decomposition is unique. We propose a convenient sieve-based estimator, derive its asymptotic properties, and investigate its finite-sample behavior through Monte Carlo simulations.
منابع مشابه
Instrumental Variable Estimation of Nonlinear Models with Nonclassical Measurement Error Using Control Variates∗
We consider nonlinear models with an independent variable that is measured with error. The measurement error can be correlated with the true value, i.e. the measurement error is allowed to be nonclassical. We show that we can use a control variate estimator to estimate the parameters of interest. If we are prepared to make an assumption of the joint distribution of the first-stage and measureme...
متن کاملIdentification and Estimation of Nonlinear Models Using Two Samples with Nonclassical Measurement Errors.
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measur...
متن کاملInstrumental Variable and Gmm Estimation for Panel Data with Measurement Error
Panel data allow correction for measurement error without assuming a known measurement error covariance matrix or using additional validation/replication data to estimate the measurement error covariance matrix. Griliches and Hausman (1986) proposed using the generalized method of moments (GMM) or optimal weighting to efficiently combine instrumental variable (IV) estimators. Wansbeek (2001) ap...
متن کاملNonparametric Identication and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information
This paper considers identi cation and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or m...
متن کاملLonger Version of Identification and Estimation of Nonlinear Models Using Two Samples with Nonclassical Measurement Errors
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measur...
متن کامل