Evolutionary Ensemble for Stock Prediction
نویسندگان
چکیده
We propose a genetic ensemble of recurrent neural networks for stock prediction model. The genetic algorithm tunes neural networks in a two-dimensional and parallel framework. The ensemble makes the decision of buying or selling more conservative. It showed notable improvement on the average over not only the buy-and-hold strategy but also other traditional ensemble approaches.
منابع مشابه
سودمندی رگرسیونهای تجمیعی و روشهای انتخاب متغیرهای پیشبین بهینه در پیشبینی بازده سهام
مقاله حاضر به بررسی سودمندی رگرسیونهای تجمیعی و روشهای انتخاب متغیرهای پیشبین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیشبینی بازده سهام شرکتهای پذیرفته شده در بورس اوراق بهادار تهران میپردازد. بهمنظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیشبینی این روش، با رگرسیون خطی و شبکههای عصبی مصنوعی...
متن کاملEvolutionary Multiobjective Optimization Approach for Evolving Ensemble of Intelligent Paradigms for Stock Market Modeling
The use of intelligent systems for stock market predictions has been widely established. This paper introduces a genetic programming technique (called Multi-Expression programming) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-fuzzy model and a d...
متن کاملStock Market Modeling Using Genetic Programming Ensembles
The use of intelligent systems for stock market predictions has been widely established. This chapter introduces two Genetic Programming (GP) techniques: Multi-Expression Programming (MEP) and Linear Genetic Programming (LGP) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm and Takagi-Sugeno n...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملIntegrating Ensemble of Intelligent Systems for Modeling Stock Indices
The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well-represented using ensemble of intelligent paradigms. To demonstrate the proposed technique, we considered Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. The intelligent paradigms consi...
متن کامل