Material to “ On Multilabel Classification and Ranking with Partial Feedback ”

نویسندگان

  • Claudio Gentile
  • Francesco Orabona
چکیده

If there exists i ∈ Ys which is not among the s-top ranked ones, then we could replace class i in position ji within Ys with class k / ∈ Ys such that pk,t > pi,t obtaining a smaller loss. Next, we show that the optimal ordering within Y ∗ s,t is precisely ruled by the nonicreasing order of pi,t. By the sake of contradiction, assume there are i and k in Y ∗ s,t such that i preceeds k in Y ∗ s,t but pk,t > pi,t. Specifically, let i be in position j1 and k be in position j2 with j1 < j2 and such that c(j1, s) > c(j2, s). Then, disregarding the (1− a)-factor, switching the two classes within Y ∗ s,t yields an expected loss difference of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multilabel Classification and Ranking with Partial Feedback

We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We sho...

متن کامل

On multilabel classification and ranking with bandit feedback

We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We sho...

متن کامل

On Multilabel Classification and Ranking

We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We sho...

متن کامل

Case-Based Multilabel Ranking

We present a case-based approach to multilabel ranking, a recent extension of the well-known problem of multilabel classification. Roughly speaking, a multilabel ranking refines a multilabel classification in the sense that, while the latter only splits a predefined label set into relevant and irrelevant labels, the former furthermore puts the labels within both parts of this bipartition in a t...

متن کامل

A Unified Model for Multilabel Classification and Ranking

Label ranking studies the problem of learning a mapping from instances to rankings over a predefined set of labels. Hitherto existing approaches to label ranking implicitly operate on an underlying (utility) scale which is not calibrated in the sense that it lacks a natural zero point. We propose a suitable extension of label ranking that incorporates the calibrated scenario and substantially e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012