Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval

نویسندگان

  • Simon Zwieback
  • Christoph Paulik
  • Wolfgang Wagner
چکیده

Surface soil moisture is one of the operational products derived from Advanced Scatterometer (ASCAT) data. The reliability of its estimation depends on the detection of predominantly frozen conditions of the landscape (including soil and vegetation) and the presence of wet snow, which would otherwise impede the estimation. As the robust determination of the freeze/thaw (F/T) state using exclusively scatterometer measurements on a global basis is complicated due to the myriad of different climatic and land cover conditions; we propose to support the retrieval using ERA Interim temperature data. The approach is based on a probabilistic time series model, whereby backscatter and temperature data are combined to estimate the freeze/thaw state. The method is assessed with proxy F/T states derived from modeled and in situ air and soil temperature data on a global basis. These analyses show an improved consistency compared to a previously published ASCAT F/T algorithm, with typical agreements between the external data and the results of the algorithm exceeding 80%. The quantitative interpretation of these comparisons is, however, hampered by discrepancies between the F/T state derived from temperature data and the one pertinent to radar remote sensing, as the former does not account for, e.g., wet snow conditions. The inclusion of the ERA Interim temperature data can improve the accuracy of the algorithm by more than 10 percentage points in regions where freezing conditions are rare. Remote Sens. 2015, 7 3207

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Early Morning Heating Rate-derived Soil Moisture in Southern Europe

The soil moisture content is of great importance for numerical weather forecasts and has been identified as one of the parameter products of EUMETSAT’s Satellite Application Facility on Land Surface Analysis (Land SAF). Soil moisture strongly affects the surface energy balance and therefore near surface temperature and humidity. Conversely, temperature observations may be used to infer the soil...

متن کامل

Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements

[1] This study presents a systematic and integrated analysis of the sensitivity of the available satellite observations to in situ soil moisture measurements. Although none of these satellites is optimized for land surface characterization, before the launches of the SMOSand HYDROS-dedicated missions they are the only potential sources of global soil moisture measurements. The satellite observa...

متن کامل

Effects of corn on c- and l-band radar backscatter: a correction method for soil moisture retrieval

Past research has demonstrated the potential of mapping soil moisture using both low frequency passive and active microwave measurements (e.g. Jackson et al., 1999; Wagner & Scipal, 2000). This resulted in formulating satellite missions carrying L-band microwave sensors capable of monitoring soil moisture globally. For example, a microwave radiometer has recently been launched by European Space...

متن کامل

Large-Scale Microwave Remote Sensing of Retrieving Surface Multi-parameters Using Active and Passive Satellite Data: In the Tibetan Plateau Region of Maqu

To conduct with these land surface parameters inversion using microwave observations in the bare soil surface, it is needed to estimate soil moisture (SM), surface temperature (ST) and surface roughness changes with microwave observations. High-frequency passive microwave radiometer sensitivity of the roughness is very low, traditional ground truth can’t provide an accurate large-scale roughnes...

متن کامل

Comparison of two retrieval methods with combined passive and active microwave remote sensing observations for soil moisture

The brightness temperature (BT) and backscattering coefficient (BSC) measured simultaneously by passive and active microwave sensors have great potential for the estimation of land surface soil moisture (SM). Several methods with combined passive and active microwave remote sensing observations for SM have been reported. Usually, the use of these methods, requires an accurate roughness conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015