Simultaneous Stabilization of Power Systems Equipped with Unified Power Flow Controller Using Particle Swarm

نویسندگان

  • Ali T. Al-Awami
  • Y. L. Abdel-Magid
  • M. A. Abido
چکیده

In this paper, the use of the supplementary controller of a unified power flow controller (UPFC) to damp low frequency oscillations in a weakly connected system is investigated. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated by measuring the electromechanical (EM) controllability through singular value decomposition (SVD) analysis. Individual designs of UPFC controllers using particle swarm optimization (PSO) technique are discussed. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions. The effectiveness of the proposed controllers in damping low frequency oscillations is verified through eigenvalue analysis and non-linear time simulation. A comparison with a robust power system stabilizer is also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a New IPFC-Based Damping Neurocontrol for Enhancing Stability of a Power System Using Particle Swarm Optimization

The interline power flow controller (IPFC) is a concept of the FACTS controller for series compensation which can inject a voltage with controllable magnitude and phase angle among multi lines. This paper proposes a novel IPFC-Based Damping Neuro-control scheme using PSO for damping oscil‌la‌t‌i‌o‌ns in a power system to improve power system stability. The add‌i‌tion of a supplementary controll...

متن کامل

Low Frequency Oscillations Suppression via CPSO based Damping Controller

In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...

متن کامل

Studying Impact of Unified Power Flow Controller on improve transient stability by Improved Harmony Search Algorithm

Main contribution of this work is improving transient stability by installing Flexible AC Transmission System (FACTS) in power systems. For do this, Unified Power Flow Controller (UPFC) has been selected. Also a novel structure has been suggested to improve classic Harmony Search algorithm and suggested improved Harmony Search (iHS) algorithm. This algorithm has been used to obtain UPFC paramet...

متن کامل

Optimal Location of Upfc for Voltage Stability Enhancement Using Mpso and Eci Algorithm for Power Flow Analysis

Today’s changing electric power systems create a growing need for flexibility, reliability, fast response and accuracy in the fields of electric power generation, transmission, distribution and consumption. Power system networks are complex systems that are nonlinear, disturbances and faults. It can be accomplished by improving the voltage profile, enhancement of voltage stability and by reduci...

متن کامل

Studying Impact of Unified Power Flow Controller on improve transient stability by Improved Harmony Search Algorithm

Main contribution of this work is improving transient stability by installing Flexible AC Transmission System (FACTS) in power systems. For do this, Unified Power Flow Controller (UPFC) has been selected. Also a novel structure has been suggested to improve classic Harmony Search algorithm and suggested improved Harmony Search (iHS) algorithm. This algorithm has been used to obtain UPFC paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005