A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals.
نویسندگان
چکیده
Using single-unit extracellular recording techniques, we have examined the role of the vanilloid receptor-1 (VR1 aka TRPV1) in bradykinin-induced activation of vagal afferent C-fiber receptive fields in guinea pig isolated airways. Of 17 airway C-fibers tested, 14 responded to bradykinin and capsaicin, 2 fibers responded to neither capsaicin nor bradykinin, and 1 fiber responded to capsaicin but not bradykinin. Thus, every bradykinin-responsive C-fiber was also responsive to capsaicin. Bradykinin (200 microl of 0.3 microM solution) evoked a burst of approximately 130 action potentials in C-fibers. In the presence of the TRPV1 antagonist capsazepine (10 microM), bradykinin evoked 83 +/- 9% (n = 6; P < 0.01) fewer action potentials. Similarly, the TRPV1 blocker, ruthenium red (10 microM), inhibited the number of bradykinin-evoked action potentials by 75 +/- 10% (n = 4; P < 0.05). In the presence of 5,8,11,14-eicosatetraynoic acid (10 microM), an inhibitor of lipoxygenase and cyclooxygenase enzymes, the number of bradykinin-induced action potentials was reduced by 76 +/- 10% (n = 6; P < 0.05). Similarly, a combination of the 12-lipoxygenase inhibitor, baicalein (10 microM) and the 5-lipoxygenase inhibitor ZD2138 [6-[3-fluoro-5-[4-methoxy-3,4,5,6-tetrahydro-2H-pyran-4-yl])phenoxy-methyl]-1-methyl-2-quinolone] (10 microM) caused significant inhibition of bradykinin-induced responses. Our data suggest a role for lipoxygenase products in bradykinin B(2) receptor-induced activation of TRPV1 in the peripheral terminals of afferent C-fibers within guinea pig trachea.
منابع مشابه
Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea.
In vitro electrophysiological techniques were used to examine the effect of bradykinin on guinea pig trachea and bronchus afferent nerve endings arising from the nodose or jugular ganglia. The data reveal that bradykinin activates nerve terminals of jugular C and Adelta fibers. Although the fibers were too few in number to study rigorously, bradykinin also stimulated nodose C fibers innervating...
متن کاملNeurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract.
We combined retrograde tracing techniques with single-neuron RT-PCR to compare the expression of neurotrophic factor receptors in nodose vs. jugular vagal sensory neurons. The neurons were further categorized based on location of their terminals (tracheal or lungs) and based on expression of the ionotropic capsaicin receptor TRPV1. Consistent with functional studies, nearly all jugular neurons ...
متن کاملSelective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough.
We have identified a distinct subtype of airway vagal afferent nerve that plays an essential role in regulating the cough reflex. These afferents are exquisitely sensitive to punctate mechanical stimuli, acid, and decreases in extracellular chloride concentrations, but are insensitive to capsaicin, bradykinin, histamine, adenosine, serotonin, or changes in airway intraluminal pressures. In this...
متن کاملAllergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways.
In the vagal-sensory system, neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) are synthesized nearly exclusively in small-diameter nociceptive type C-fiber neurons. By definition, these neurons are designed to respond to noxious or tissue-damaging stimuli. A common feature of visceral inflammation is the elevation in production of sensory neuropeptides. Little is kno...
متن کاملTRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice
AIM Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 304 3 شماره
صفحات -
تاریخ انتشار 2003