Biosynthesis of terpenoid natural products in fungi.
نویسنده
چکیده
Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla--the Ascomycota and Basidiomycota--which will be illustrated for each group of terpenoid natural products.
منابع مشابه
Biosynthesis of fungal meroterpenoids.
Covering: up to September 2015. Meroterpenoids are hybrid natural products that partially originate from the terpenoid pathway. The meroterpenoids derived from fungi display quite diverse structures, with a wide range of biological properties. This review summarizes the molecular bases for their biosyntheses, which were recently elucidated with modern techniques, and also discusses the plausibl...
متن کاملBacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis.
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey dite...
متن کاملProbing Labdane-Related Diterpenoid Biosynthesis in the Fungal Genus Aspergillus
While terpenoid production is generally associated with plants, a variety of fungi contain operons predicted to lead to such biosynthesis. Notably, fungi contain a number of cyclases characteristic of labdane-related diterpenoid metabolism, which have not been much explored. These also are often found near cytochrome P450 (CYP) mono-oxygenases that presumably further decorate the ensuing diterp...
متن کاملTrinuclear Metal Clusters in Catalysis by Terpenoid Synthases.
Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases ...
متن کاملSesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus
Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5-8-5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in biochemical engineering/biotechnology
دوره 148 شماره
صفحات -
تاریخ انتشار 2015