The primordial pool of follicles and nest breakdown in mammalian ovaries.
نویسندگان
چکیده
The creation of the pool of follicles available for selection and ovulation is a multi-faceted, tightly regulated process that spans the period from embryonic development through to the first reproductive cycle of the organism. In mice, this development can occur in mere weeks, but in humans, it is sustained for years. Embryonic germ cell development involves the migration of primordial germs cells to the genital ridge, and the mitotic division of germ cell nuclei without complete cytokinesis to form a multi-nucleated syncytia, or germ cell nest. Through combined actions of germ cell apoptosis and somatic cell migration, the germ cell nuclei are packaged, with surrounding granulosa cells, into primordial follicles to form the initial follicle pool. Though often dismissed as quiescent and possibly uninteresting, this initial follicle pool is actually quite dynamic. In a very strictly controlled mechanism, a large portion of the initial primordial follicles formed is lost by atresia before cycling even begins. Remaining follicles can undergo alternate fates of continued dormancy or selection leading to follicular growth and differentiation. Together, the processes involved in the fate decisions of atresia, sustained dormancy, or activation carve out the follicle pool of puberty, the pool of available oocytes from which all future reproductive cycles of the female can choose. The formation of the initial and pubertal follicle pools can be predictably affected by exogenous treatment with hormones or molecules such as activin, demonstrating the ways the ovary controls the quality and quantity of germ cells maintained. Here, we review the biological processes involved in the formation of the initial follicle pool and the follicle pool of puberty, address the alternate models for regulating germ cell number and outline how the ovary quality-controls the germ cells produced.
منابع مشابه
Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary
In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mic...
متن کاملDepletion of Ovarian Primordial Follicles after Gamma Irradiation
Introduction:Artifical sourace of radiation have increased worldwide average annual exposure of mankind and could especially affect rapidly dividing cells in gonads. Since, radiation sensitivities of different components of primordial follicles, and the time required for their deplation have not been morphologically eatablished we decided to estimate the time required for depletion of primordi...
متن کاملCulture and Co-Culture of Mouse Ovaries and Ovarian Follicles
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth,...
متن کاملThe role of autophagy during murine primordial follicle assembly
It is generally accepted that significant germ cell loss occurs during the establishment of the primordial follicle pool in most mammalian ovaries around the time of birth. However, the underlying mechanisms responsible for these processes remain largely unknown. In this investigation, we explored the role of autophagy during the establishment of the primordial follicle pool and found that auto...
متن کاملEggs in the nest.
The last several years have produced a great deal of evidence supporting the once revolutionary notion that the formation of the ovary is a directed rather than passive process. For example, factors such as follistatin, respondin-1, and Wnt-4 are differentially expressed in the XX gonad and appear to play a pivotal role in differentiation of the bipotential ovary (1). Primordial germ cells are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2009