A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models

نویسندگان

  • Ludovic Giet
  • Michel Lubrano
چکیده

A Minimum Disparity Distance Estimator minimizes a φ-divergence between the marginal density of a parametric model and its non-parametric estimate. This principle is applied to the estimation of stochastic differential equation models, choosing the Hellinger distance as particular φ−divergence. Under an hypothesis of stationarity, the parametric marginal density is provided by solving the Kolmogorov forward equation. A particular emphasis is put on the non-parametric estimation of the sample marginal density which has to take into account sample dependence and kurtosis. A new window size determination is provided. The classical estimator is presented alternatively as a distance minimizer and as a pseudo likelihood maximizer. The latter presentation opens the way to Bayesian inference. The method is applied to continuous time models of the interest rate. In particular, various models are tested using alternatively Aı̈t-Sahalia (1996) test and a test based on the Hellinger distance. An explanation is given to the paradox raised by Pritsker (1998). JEL Classification: C11, C14, , C22, C52, E43

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Hellinger distance estimates for semiparametric models

Minimum distance techniques have become increasingly important tools for solving statistical estimation and inference problems. In particular, the successful application of the Hellinger distance approach to fully parametric models is well known. The corresponding optimal estimators, known as minimum Hellinger distance estimators, achieve efficiency at the model density and simultaneously posse...

متن کامل

Statistical inference for discrete-time samples from affine stochastic delay differential equations

Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudolikelihood estimators, which are easy to calculate in practice. Also a more general class of prediction-based estimating functions is investigated. In particular, the optimal prediction-based estimating function and the asymptotic properties ...

متن کامل

Simulating Exchange Rate Volatility in Iran Using Stochastic Differential ‎Equations‎

‎The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic  variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...

متن کامل

Application of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit

In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...

متن کامل

Minimum Hellinger Distance Estimation with Inlier Modification

Inference procedures based on the Hellinger distance provide attractive alternatives to likelihood based methods for the statistician. The minimum Hellinger distance estimator has full asymptotic efficiency under the model together with strong robustness properties under model misspecification. However, the Hellinger distance puts too large a weight on the inliers which appears to be the main r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2008