Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium.

نویسندگان

  • Jie-Sen Zhou
  • Yun Zhao
  • Hong-Bin Zhou
  • Yong Wang
  • Yin-Fang Wu
  • Zhou-Yang Li
  • Nan-Xia Xuan
  • Chao Zhang
  • Wen Hua
  • Song-Min Ying
  • Wen Li
  • Hua-Hao Shen
  • Zhi-Hua Chen
چکیده

Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells.

Airway mucus hypersecretion is a major pathological characteristic of chronic obstructive pulmonary disease (COPD), and cigarette smoke is highly implicated in mucus secretion and the development of COPD. Cigarette smoke reportedly induces mucin overproduction through the epidermal growth factor receptor (EGFR) in the airway epithelium; however, the underlying mechanisms responsible for the act...

متن کامل

Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways.

Cigarette smoking is strongly implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mucus hypersecretion is the key manifestation in patients with COPD and mucin 5AC (MUC5AC) is a major component of airway mucus. Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor which can be stimulated to bind to the MUC5AC promoter and induce MUC5AC promoter activation. P...

متن کامل

Cigarette smoke induces MUC5AC expression through the activation of Sp1

Background: Cigarette smokers have increased mucus secretion and MUC5AC gene expression. Results: Cigarette smoke increases Sp1 protein expression and activates Sp1 binding to a smoke responsive promoter region of the MUC5AC. Conclusion: Sp1 is the key regulator of cigarette smoke-induced MUC5AC mRNA transcription in lung epithelial cells. Significance: Sp1 may be a putative target to treat muc...

متن کامل

Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways.

Mucus hypersecretion and mucin MUC5AC overexpression are pathological features of chronic obstructive pulmonary disease (COPD). This study examines the inhibitory effect of aclidinium, a new long-acting muscarinic antagonist, on MUC5AC expression in human airway epithelial cells. MUC5AC mRNA (RT-PCR) and protein expression (ELISA and immunohistochemistry) were studied in human bronchial tissue ...

متن کامل

Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli.

Pathogenic factors associated with chronic obstructive pulmonary disease (COPD), such as cigarette smoke, proinflammatory cytokines, and bacterial infections, can individually induce respiratory mucins in vitro and in vivo. Since co-presence of these factors is common in lungs of patients with COPD, we hypothesized that cigarette smoke can amplify mucin induction by bacterial exoproducts and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 310 11  شماره 

صفحات  -

تاریخ انتشار 2016