A New Characterization of Some Alternating and Symmetric Groups
نویسندگان
چکیده
We suppose that p = 2α3β +1, where α ≥ 1, β ≥ 0, and p ≥ 7 is a prime number. Then we prove that the simple groups An, where n = p,p+1, or p+2, and finite groups Sn, where n = p,p+1, are also uniquely determined by their order components. As corollaries of these results, the validity of a conjecture of J. G. Thompson and a conjecture of Shi and Bi (1990) both on An, where n= p,p+1, or p+2, is obtained. Also we generalize these conjectures for the groups Sn, where n= p,p+1.
منابع مشابه
A characterization of the symmetric group of prime degree
Let $G$ be a finite group and $Gamma(G)$ the prime graph of $G$. Recently people have been using prime graphs to study simple groups. Naturally we pose a question: can we use prime graphs to study almost simple groups or non-simple groups? In this paper some results in this respect are obtained and as follows: $Gcong S_p$ if and only if $|G|=|S_p|$ and $Gamma(G)=Gamma(S_p)$, whe...
متن کاملAlternating Regular Tree Grammars in the Framework of Lattice-Valued Logic
In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued) regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملNew characterization of some linear groups
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
متن کاملFuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks
Fuchsian groups (acting as isometries of the hyperbolic plane) occur naturally in geometry, combinatorial group theory, and other contexts. We use character-theoretic and probabilistic methods to study the spaces of homomorphisms from Fuchsian groups to symmetric groups. We obtain a wide variety of applications, ranging from counting branched coverings of Riemann surfaces, to subgroup growth an...
متن کامل