Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

نویسندگان

  • Martin J. Gander
  • Felix Kwok
  • F. Kwok
چکیده

The use of Dirichlet-to-Neumann operators as transmission conditions is known to yield optimal Schwarz methods that converge in a finite number of iterations when the subdomain decomposition has tree-like connectivity. However, it remains an open problem whether it is possible to construct a finitely terminating algorithm for arbitrary decompositions. In this article, we construct a Schwarz method that converges in exactly two steps for any decomposition into subdomains with minimal overlap. In this method, every subdomain must communicate with all other subdomains, but only data along subdomain boundaries need to be exchanged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spatial Domain Decomposition Method for Parabolic Optimal Control Problems ?

We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space-time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet bounda...

متن کامل

Finite Volume Methods on Non-Matching Grids with Arbitrary Interface Conditions and Highly Heterogeneous Media

We are interested in a robust and accurate domain decomposition method with arbitrary interface conditions on non-matching grids using a finite volume discretization. We introduce transmission operators to take into account the non-matching grids. Under compatibility assumptions, we have the well-posedness of the global problem and of the local subproblems with a new discretization of the arbit...

متن کامل

An Iterative Non-overlapping Domain Decomposition Method for Optimal Boundary Control Problems Governed by Parabolic Equations

In this paper, we consider a numerical method for solving optimal boundary control problems governed by parabolic equations. In order to avoid large amounts of calculation produced by traditional numerical methods, we establish an iterative non-overlapping domain decomposition method. The whole domain is divided into many non-overlapping subdomains, and the optimal boundary control problem is d...

متن کامل

Comparison of the Dirichlet-Neumann and Optimal Schwarz Method on the Sphere

We investigate the performance of domain decomposition methods for solving the Poisson equation on the surface of the sphere. This equation arises in a global weather model as a consequence of an implicit time discretization. We consider two different types of algorithms: the Dirichlet-Neumann algorithm and the optimal Schwarz method. We show that both algorithms applied to a simple two subdoma...

متن کامل

Approximation of Optimal Interface Boundary Conditions for Two-Lagrange Multiplier FETI Method

Interface boundary conditions are the key ingredient to design efficient domain decomposition methods. However, convergence cannot be obtained for any method in a number of iterations less than the number of subdomains minus one in the case of a one-way splitting. This optimal convergence can be obtained with generalized Robin type boundary conditions associated with an operator equal to the Sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010