Self-Similar Hot Accretion Flow onto a Rotating Neutron Star: Structure and Stability

نویسندگان

  • Mikhail V. Medvedev
  • Ramesh Narayan
چکیده

We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a rotating neutron star or any other rotating compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (i) a two-temperature solution which is valid in an inner zone r ≤ 10 (r is in Schwarzchild units), and (ii) a one-temperature solution at larger radii. In both zones, ρ ∝ r−2, Ω ∝ r−3/2, v ∝ r, Tp ∝ r−1; in the two-temperature zone, Te ∝ r−1/2. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity. Hence the luminosity and the flow parameters (density, temperature, angular velocity) are independent of Ṁ . The settling solution described here is not advection-dominated, and is thus different from the self-similar ADAF found around black holes. When the spin of the star is small enough, however, the present solution transforms smoothly to a (settling) ADAF. We carried out a stability analysis of the settling flow. The flow is convectively and viscously stable and is unlikely to have strong winds or outflows. Unlike another cooling-dominated system — the SLE disk, — the settling flow is thermally stable provided that thermal conduction is taken into account. This strong saturated-like thermoconduction does not change the structure of the flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Layer Self-Similar Solution for the Hot Radiative Accretion onto a rapidly Spinning Neutron Star

We consider hot accretion onto a rapidly spinning neutron star (or any other compact object with a surface). A radiative hot settling flow has been discovered at low accretion rates in the early work by Medvedev & Narayan (2001) and analytical solution has been presented. It was shown later that this flow can match external medium smoothly, thus enforcing its physical feasibility. Here we compl...

متن کامل

Hot Radiative Accretion onto a Spinning Neutron Star

A new type of self-similar hot viscous radiative accretion flow onto a rapidly spinning neutron star has recently been discovered. This “hot brake” flow forms in the two-temperature zone (close to a central object), but at a sufficiently low accretion rate and a high spin it may extend in the radial direction beyond ∼ 300 Schwarzchild radii into a one-temperature zone. When the spin of the star...

متن کامل

Self-Similar Hot Accretion onto a Spinning Neutron Star: Matching the Outer Boundary Conditions

Medvedev & Narayan have described a hot accretion flow onto a spinning neutron star in which the gas viscously brakes the spin of the star. Their self-similar solution has the surprising property that the density, temperature and angular velocity of the gas at any radius are completely independent of the outer boundary conditions. Hence, the solution cannot be matched to a general external medi...

متن کامل

Self-Similar Hot Accretion Flow onto a Neutron Star

We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. We show that the accretion flow has an extended settling region which can be described by means of two analytical self-similar solutions: a two-temperature solution which is valid in an inner zone,...

متن کامل

اثر مقاومت مغناطیسی متغیر بر ساختار قرصهای برافزایشی با پهن رفت غالب مغناطیده دوقطبی

In this work, we carry out self –similar solutions of viscous-resistive accretion flows around a magnetized compact object. We consider an axi-symmetric, rotating, isothermal steady accretion flow, which contains a poloidal magnetic field of the central star. The dominant mechanism of energy dissipation is assumed to be the turbulence viscosity and magnetic diffusivity due to the magnetic field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001