Regular Orbital Measures on Lie Algebras

نویسنده

  • ALEX WRIGHT
چکیده

Let H0 be a regular element of an irreducible Lie Algebra g, and let μH0 be the orbital measure supported on OH0 . We show that μ̂kH0 ∈ L (g) if and only if k > dim g/(dim g − rank g).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The second dual of strongly zero-product preserving maps

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...

متن کامل

Weyl’s character formula for non-connected Lie groups and orbital theory for twisted affine Lie algebras

We generalize I. Frenkel’s orbital theory for non twisted affine Lie algebras to the case of twisted affine Lie algebras using a character formula for certain non-connected compact Lie groups.

متن کامل

BOUNDS FOR FOURIER TRANSFORMS OF REGULAR ORBITAL INTEGRALS ON p-ADIC LIE ALGEBRAS

Let G be a connected reductive p-adic group and let g be its Lie algebra. LetO be a G-orbit in g. Then the orbital integral μO corresponding to O is an invariant distribution on g, and Harish-Chandra proved that its Fourier transform μ̂O is a locally constant function on the set g′ of regular semisimple elements of g. Furthermore, he showed that a normalized version of the Fourier transform is l...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008