Specific Surface Area Increase during Cellulose Nanofiber Manufacturing Related to Energy Input
نویسندگان
چکیده
Softwood fibers pretreated with a monocomponent endoglucanase were used to prepare a series of cellulose nanofiber qualities using a microfluidizer and 2 to 34 MWh ton of energy input. The specific surface area was determined for the series using critical point drying and gas adsorption. Although the specific surface area reached a maximum of 430 m g at 11 MWh ton, the nanofiber yield and transmittance continued to increase beyond this point, indicating that more energy is required to overcome possible friction caused by an interwoven nanofiber network unrelated to the specific surface area. A new method for estimating the surface area was investigated using xyloglucan adsorption in pure water. With this method it was possible to follow the disintegration past the point of maximum specific surface area. The technical significance of these findings is discussed.
منابع مشابه
Producing Cellulose nanofiber from Cotton wastes by electrospinning method
One of the main issues of nanotechnology is producing materials with new properties. Nanotechnology, as a powerful tool, has the ability to create evolution in the agricultural system and food–medicinal industries across the world. Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of paper production and rem...
متن کاملProducing Cellulose nanofiber from Cotton wastes by electrospinning method
One of the main issues of nanotechnology is producing materials with new properties. Nanotechnology, as a powerful tool, has the ability to create evolution in the agricultural system and food–medicinal industries across the world. Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of paper production and rem...
متن کاملPolyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli
Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyld...
متن کاملHierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage
The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. e...
متن کاملNanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood
Nanofibrillated cellulose (NFC) from wood is an interesting material constituent of high strength and high aspect ratio, which easily forms networks through interfibril secondary bonding including hydrogen bonds. This has been exploited in preparation of new materials, which extend the range of properties for existing cellulosic materials. The objective is to explore processing-structure and st...
متن کامل