Study of the growth of NiO on highly oriented pyrolytic graphite by X-ray absorption spectroscopy

نویسنده

  • I. Preda
چکیده

In this work, we present a X-ray absorption spectroscopy (XAS) study of the growth of NiO on highly oriented pyrolytic graphite (HOPG). NiO as been grown by reactive evaporation of metallic Ni in an oxygen atmosphere (2× 10−5 Torr) at room temperature. We paid special attention to he study of the early stages of growth. Both, Ni 2p and O 1s core-level XAS spectra were measured. For large NiO coverages, the spectra resemble hat of a NiO single crystal, thus indicating the formation of a stoichiometric NiO thin film on the HOPG substrate. The Ni 2p XAS spectra remain imilar during the whole growth process, indicating that Ni atoms are present in the high spin Ni2+ form, as supported by multiplet calculations. n contrast, for low coverages the line-shape of the O 1s XAS spectra differ strongly from that of bulk NiO. Cluster calculations of the spectra n octahedral and pyramidal symmetries support the formation of nanometric planar NiO islands at the graphite steps as previously observed by tomic force microscopy (AFM) in this system. 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Optical Absorption of Carbon Nanostructures Synthesized by Laser Ablation of Highly Oriented Pyrolytic Graphite in Organic Solvents

In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures...

متن کامل

Splitting of the Ni 3d states at the surface of NiO/HOPG nanostructures

This project deals with the study of the electronic structure of the NiO nanostructures formed at the early stages of growth of NiO on highly oriented pyrolytic graphite (HOPG). Our main aim is the study of nanostructured NiO systems where possible surface effects are enhanced by the large surface to volume ratio of the nanostructures. In fact, early studies [1] on 3 nm NiO nanoparticles with u...

متن کامل

Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering.

The electronic structures of nitrogen species incorporated into highly oriented pyrolytic graphite (HOPG), prepared by low energy (200 eV) nitrogen ion sputtering and subsequent annealing at 1000 K, were investigated by X-ray photoelectron spectroscopy (XPS), angle-dependent X-ray absorption spectroscopy (XAS), and Raman spectroscopy. An additional peak was observed at higher binding energy of ...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007