Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

نویسندگان

  • X. Cai
  • Z.-L. Yang
  • J. B. Fisher
  • X. Zhang
  • M. Barlage
  • F. Chen
چکیده

Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multiparameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN’s state-of-the-art concept of carbon cost theory and SWAT’s strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin

[1] This study evaluates regional-scale hydrological simulations of the newly developed community Noah land surface model (LSM) with multiparameterization options (Noah-MP). The model is configured for the Mississippi River Basin and driven by the North American Land Data Assimilation System Phase 2 atmospheric forcing at 1/8° resolution. The simulations are compared with various observational ...

متن کامل

Accounting for Pliem-Xiu and NOAH Module to Simulate Dust: A Case of Western Areas of Ahwaz

Extended abstract 1- INTRODUCTION In the arid and semi-arid areas of Asia, dust storms occur frequently. Much progress has been made in the monitoring modeling and prediction of Asian dust storms. Dust emission is caused by wind erosion in the sensitive areas. Wind erosion is described as the transportation of soil particles by means of the wind. Soil Surface moisture is one of the most i...

متن کامل

The community Noah land surface model with multiparameterization options (Noah‐MP): 2. Evaluation over global river basins

[1] The augmented Noah land surface model described in the first part of the two‐part series was evaluated here over global river basins. Across various climate zones, global‐scale tests can reveal a model’s weaknesses and strengths that a local‐scale testing cannot. In addition, global‐scale tests are more challenging than local‐ and catchment‐scale tests. Given constant model parameters (e. g...

متن کامل

Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States

[1] We investigated the impacts of vegetation and groundwater dynamics on warm season precipitation by using the Weather Research and Forecasting (WRF) model coupled with a modified Noah land surface model (LSM). The modified Noah LSM was augmented with an interactive canopy model and a simple groundwater model (SIMGM). A series of experiments performed shows that incorporating vegetation and g...

متن کامل

Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model

Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016