Optimal Iterative Pricing over Social Networks
نویسندگان
چکیده
We study the optimal pricing for revenue maximization over social networks in the presence of positive network externalities. In our model, the value of a digital good for a buyer is a function of the set of buyers who have already bought the item. In this setting, a decision to buy an item depends on its price and also on the set of other buyers that have already owned that item. The revenue maximization problem in the context of social networks has been studied by Hartline, Mirrokni, and Sundararajan [9], following the previous line of research on optimal viral marketing over social networks [11, 12, 13]. We consider the Bayesian setting in which there are some prior knowledge of the probability distribution on the valuations of buyers. In particular, we study two iterative pricing models in which a seller iteratively posts a new price for a digital good (visible to all buyers). In one model, re-pricing of the items are only allowed at a limited rate. For this case, we give a FPTAS for the optimal pricing strategy in the general case. In the second model, we allow very frequent re-pricing of the items. We show that the revenue maximization problem in this case is inapproximable even for simple deterministic valuation functions. In the light of this hardness result, we present constant and logarithmic approximation algorithms for a special case of this problem when the individual distributions are identical.
منابع مشابه
Pricing in Social Networks with Negative Externalities
We study the problems of pricing an indivisible product to consumers who are embedded in a given social network. The goal is to maximize the revenue of the seller. We assume impatient consumers who buy the product as soon as the seller posts a price not greater than their values of the product. The product’s value for a consumer is determined by two factors: a fixed consumer-specified intrinsic...
متن کاملOptimal Iterative Pricing with Positive Network Externalities
In this paper, we study optimal pricing for revenue maximization in the presence of positive network externalities. In our model, the value of a digital good for a buyer is a function of the set of buyers who have already bought the item. In this setting, a buyer’s decision to buy an item depends on the price of the item as well as the set of other buyers that own the item. The revenue maximiza...
متن کاملOptimal Power Management to Minimize SER in Amplify and-Forward Relay Networks
This paper studies optimal power allocation to minimize symbol error rate (SER) of amplify-and-forward cooperative diversity networks. First, we analytically solve optimal power allocation problem to minimize SER for three different scenarios, namely, multi-branch single-relay, single-branch multi-relay and multi-branch multi-relay cooperative diversity networks, all subject to a given total re...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملIntroduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)
Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...
متن کامل