Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington's Disease

نویسندگان

  • Jana Miniarikova
  • Ilaria Zanella
  • Angelina Huseinovic
  • Tom van der Zon
  • Evelyn Hanemaaijer
  • Raygene Martier
  • Annemart Koornneef
  • Amber L Southwell
  • Michael R Hayden
  • Sander J van Deventer
  • Harald Petry
  • Pavlina Konstantinova
چکیده

Huntington's disease (HD) is a neurodegenerative disorder caused by accumulation of CAG expansions in the huntingtin (HTT) gene. Hence, decreasing the expression of mutated HTT (mtHTT) is the most upstream approach for treatment of HD. We have developed HTT gene-silencing approaches based on expression cassette-optimized artificial miRNAs (miHTTs). In the first approach, total silencing of wild-type and mtHTT was achieved by targeting exon 1. In the second approach, allele-specific silencing was induced by targeting the heterozygous single-nucleotide polymorphism (SNP) rs362331 in exon 50 or rs362307 in exon 67 linked to mtHTT. The miHTT expression cassette was optimized by embedding anti-HTT target sequences in ten pri-miRNA scaffolds and their HTT knockdown efficacy, allele selectivity, passenger strand activity, and processing patterns were analyzed in vitro. Furthermore, three scaffolds expressing miH12 targeting exon 1 were incorporated in an adeno-associated viral serotype 5 (AAV5) vector and their HTT knock-down efficiency and pre-miHTT processing were compared in the humanized transgenic Hu128/21 HD mouse model. Our data demonstrate strong allele-selective silencing of mtHTT by miSNP50 targeting rs362331 and total HTT silencing by miH12 both in vitro and in vivo. Ultimately, we show that HTT knock-down efficiency and guide strand processing can be enhanced by using different cellular pri-miRNA scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways

Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and  the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...

متن کامل

The role of microRNAs in cardiovascular disease

Cardiovascular disease has become the main factor of death and birth defects in the world. There are some therapeutic structures and drugs for curative and palliative therapy of the disease, but to the aim of accessing reliable therapy or to postpone onset of disease, especially for individuals with heritable coronary artery disease in their pedigree Genetic engineering technologies are making...

متن کامل

Safe and Efficient Silencing with a Pol II, but Not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin

Huntington's disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vect...

متن کامل

“Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington's Disease

Lowering mutant Huntingtin is a consensus therapeutic strategy for Huntington's disease. In this issue of Neuron, Kordasiewicz et al. (2012) show the benefit of transient antisense oligonucleotide (ASO) therapy to degrade Huntingtin mRNA and elicit sustained therapeutic benefit in HD mice.

متن کامل

Inhibition of mutant huntingtin expression by RNA duplex targeting expanded CAG repeats

The specific silencing of the gene of interest is the major objective of RNA interference technology; therefore, unique sequences but not abundant sequence repeats are targeted by silencing reagents. Here, we describe the targeting of expanded CAG repeats that occur in transcripts derived from the mutant allele of the gene implicated in Huntington's disease (HD) in the presence of the normal al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016