Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains for Large-Scale Higher Order Finite Element Simulations
نویسندگان
چکیده
When applying higher order finite elements to curved 3D domains in largescale accelerator simulations, complexities that arise include needing valid curved finite elements and the capability to track the movement of mesh refinement in the critical domains. This paper presents a procedure which combines Bézier mesh curving and size driven mesh adaptation technologies to address those requirements. The intelligent selection of local mesh modifications to eliminate invalid curved elements and properly control the size distribution are the two key technical components. The procedure has been successfully applied by SLAC to generate 3D moving curved meshes in the large-scale electromagnetic modeling of next generation accelerator designs. The results demonstrated that valid curvilinear meshes not only make the time domain simulations more reliable but also improve the computational efficiency up to 30%.
منابع مشابه
Curved mesh correction and adaptation tool to improve COMPASS electromagnetic analyses
SLAC performs large-scale simulations for the next-generation accelerator design using higher-order finite elements. This method requires using valid curved meshes and adaptive mesh refinement in complex 3D curved domains to achieve its fast rate of convergence. ITAPS has developed a procedure to address those mesh requirements to enable petascale electromagnetic accelerator simulations by SLAC...
متن کاملParallel Curved Mesh Adaptation for Large Scale High-Order Finite Element Simulations
This paper presents the development of a parallel adaptive mesh control procedure designed to operate with high-order finite element analysis packages to enable large scale automated simulations on massively parallel computers. The curved mesh adaptation procedure uses curved entity mesh modification operations. Applications of the curved mesh adaptation procedure have been developed to support...
متن کاملMoving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod
In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...
متن کاملFinite element mesh generation and adaptive meshing
This review paper gives a detailed account of the development of mesh generation techniques on planar regions, over curved surfaces and within volumes for the past years. Emphasis will be on the generation of the unstructured meshes for purpose of complex industrial applications and adaptive refinement finite element analysis. Over planar domains and on curved surfaces, triangular and quadrilat...
متن کاملParallel simulations of 3 d DC borehole resistivity measurements with goal - oriented self - adaptive hp finite element method
In this paper we present a parallel algorithm of the goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and with parallel multi-frontal direct solver. The algorithm generates in a fully automatic mode (without any user interaction) a sequence of meshes delivering exponential convergence of the prescribed quantity of interest with respect to the mesh size (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008