Assessment of cerebral autoregulation: the quandary of quantification.

نویسندگان

  • Y C Tzeng
  • P N Ainslie
  • W H Cooke
  • K C Peebles
  • C K Willie
  • B A MacRae
  • J D Smirl
  • H M Horsman
  • C A Rickards
چکیده

We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n = 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n = 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n = 16) who underwent step changes in end-tidal P(CO2) (P(ET)(CO2) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in P(ET)(CO2) were positively related to coherence [LF: β = 0.0065 arbitrary units (AU)/mmHg and VLF: β = 0.011 AU/mmHg, both P < 0.01] and inversely related to phase (LF: β = -0.026 rad/mmHg and VLF: β = -0.018 rad/mmHg, both P < 0.01) and normalized gain (LF: β = -0.042%/mmHg(2) and VLF: β = -0.013%/mmHg(2), both P < 0.01). However, Pet(CO(2)) was positively associated with gain (LF: β = 0.0070 cm·s(-1)·mmHg(-2), P < 0.05; and VLF: β = 0.014 cm·s(-1)·mmHg(-2), P < 0.01). Thus, during changes in P(ET)(CO2), LF phase was inversely related to LF gain (β = -0.29 cm·s(-1)·mmHg(-1)·rad(-1), P < 0.01) but positively related to LF normalized gain (β = 1.3% mmHg(-1)/rad, P < 0.01). These findings collectively suggest that only select CA metrics can be used interchangeably and that interpretation of these measures should be done cautiously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoregulation of Cerebral Circulation

Autoregulation of cerebral circulation is the mechanism by which the cerebral blood flow (CBF) is maintained constant between large limits of arterial pressure. Autoregulation appears only between certain pressure limits. The specialized literature presents 2 possible mechanisms of autoregulation: myogenic reaction and metabolic regulation. Sympathetic nervous system stimulation and the antagon...

متن کامل

Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.

Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological ...

متن کامل

وازوموتور راکتیویتی مغز(Cerebrovascular Reactivity) در حاملگی نرمال و پره‌اکلامپسی

    Background & Aim: Preeclampsia is the major cause of maternal and perinatal morbidity and mortality. Transcranial Doppler(TCD) as a noninvasive procedure is used to assess hemodynamic changes in middle cerebral artery(MCA). Knowing the influence of normal pregnancy and preeclampsia on brain hemodynamics is essential for proper management of anesthesia, labor and vasoactive drug usage in the...

متن کامل

Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature.

INTRODUCTION The preterm born infant's ability to regulate its cerebral blood flow (CBF) is crucial in preventing secondary ischemic and hemorrhagic damage in the developing brain. The relationship between arterial blood pressure (ABP) and CBF estimates, such as regional cerebral oxygenation as measured by near-infrared spectroscopy (NIRS), is an attractive option for continuous non-invasive as...

متن کامل

Assessment of cerebrovascular autoregulation in head-injured patients: a validation study.

BACKGROUND AND PURPOSE Cerebrovascular autoregulation is frequently measured in head-injured patients. We attempted to validate 4 bedside methods used for assessment of autoregulation. METHODS PET was performed at a cerebral perfusion pressure (CPP) of 70 and 90 mm Hg in 20 patients. Cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRo2) were determined at each CPP level. Pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 303 6  شماره 

صفحات  -

تاریخ انتشار 2012