Missing Value Imputation Method Based on Density Clustering and Grey Relational Analysis
نویسندگان
چکیده
In the computer-aided medical diagnosis, the problem of missing attribute values in many medical data sets brings a great challenge to data mining. To solve the problem, this paper proposes a method based on density clustering and grey relational analysis. It provides an effective solution for missing medical data. The method uses the characteristic and degree of data samples dynamic relation and the existing attribute value information to impute the missing value, in order to alleviate the difficulty brought by missing data for aided medical diagnosis. By comparison with the experiment, the proposed method can effectively solve the classification problem which causes by missing medical attribute value, accurately predict the patient’s health and provide the help to doctor’s diagnosis.
منابع مشابه
A Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection
Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decisi...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملClustering-Based Multiple Imputation via Gray Relational Analysis for Missing Data and Its Application to Aerospace Field
A large number of scientific researches and industrial applications commonly suffer from missing data. Some inappropriate techniques of missing value treatment compromise data quality, which detrimentally influences the knowledge discovery. In this paper, we propose a missing data completion method named CBGMI. Firstly, it separates the nonmissing data instances into several clusters by excludi...
متن کاملImproving Classification Accuracy Using Missing Data Filling Algorithms for the Criminal Dataset
Predicting crime types by using classification algorithms can help to find factors affecting crimes and prevent crimes. Due to various reasons in the process of data collection, there are often a large number of missing values in actual criminal dataset, which seriously affects the classification accuracy. Therefore, based on mutual KNNI (K nearest neighbor imputation) algorithm and combined wi...
متن کاملOptimization of the injection molding process of Derlin 500 composite using ANOVA and grey relational analysis
Warpage and shrinkage control are important factors in proving the quality of thin-wall parts in injection modeling process. In the present paper, grey relational analysis was used in order to optimize these two parameters in manufacturing plastic bush of articulated garden tractor. The material used in the plastic bush is Derlin 500. The input parameters in the process were selected according ...
متن کامل