Port-Hamiltonian systems on discrete manifolds
نویسندگان
چکیده
This paper offers a geometric framework for modeling port-Hamiltonian systems on discrete manifolds. The simplicial Dirac structure, capturing the topological laws of the system, is defined in terms of primal and dual cochains related by the coboundary operators. This finitedimensional Dirac structure, as discrete analogue of the canonical Stokes-Dirac structure, allows for the formulation of finite-dimensional port-Hamiltonian systems that emulate the behaviour of the open distributed-parameter systems with Hamiltonian dynamics.
منابع مشابه
Explicit Simplicial Discretization of Distributed-Parameter Port-Hamiltonian Systems
Simplicial Dirac structures as finite analogues of the canonical Stokes-Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input-output finite-dimensional portHamiltonian systems that...
متن کاملDiscrete IDA-PBC Design for 2D Port-Hamiltonian Systems
We address the discrete-time passivity-based control laws synthesis within port-Hamiltonian framework. We focus on IDA-PBC design for canonical port-Hamiltonian systems with separable energy being quadratic in momentum. For this class of systems, we define a discrete Hamiltonian dynamics that exactly satisfies a discrete energy balance. We then derive a discrete controller following the IDA-PBC...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملConstruction of discrete-time models for port-controlled Hamiltonian systems with applications
The issues of constructing a discrete-time model for Hamiltonian systems are in general different from those for dissipative systems. We propose an algorithm for constructing an approximate discrete-time model, which guarantees Hamiltonian conservation. We show that the algorithm also preserves, in a weaker sense, the losslessness property of a class of port-controlled Hamiltonian systems. An a...
متن کاملPort-Hamiltonian formulation of shallow water equations with coriolis force and topography∗
Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...
متن کامل